
To Reviewer 1 (R1): Thanks for the comments and we will reorganize the paper according to your suggestions. R11

may have some misunderstandings and we will clarify it first. R1 may think NAT as a NAS method. Actually, the2

problem for NAT (i.e., architecture optimization defined in Sec. 3.1) is different from what is addressed in NAS methods3

(e.g., ENAS and NAO) and can be regarded as “a post-processing step” (recognized by R2).4

Q1. Limitation of large space in NAO: Although NAO can do a similar job as NAT, NAO and NAT focus on different5

problems. The search space of NAO is designed for NAS and might be unnecessarily large for architecture optimization,6

leading to unstable results (e.g., lower accuracy on ENAS and much higher cost on VGG in Tables 1 and 2). Instead, the7

search space of NAT is relatively smaller and suitable for this problem, making the model easier to train for this task.8

Q2. How to get skip connections in VGG? To build a general representation for both hand-crafted and NAS based9

architectures, we add null connections into VGG to ensure that each node has two input nodes (defined in Line 120).10

Then, NAT can add skip connections into VGG by replacing the null connections (see more discussions in Section 4.5).11

Q3. Why the generated networks have two inputs “-2” and “-1”: For fair comparison, we follow the same and also12

a common setting in [21, 22, 24, 26] to build the cells with two input nodes, denoted by “-2” and “-1”. Here, “-2” and13

“-1” represent the outputs of the second nearest and the most nearest cell in front of the current one, respectively.14

Q4. Reasonable to find best expected operation setting in Eqn. (2): Thanks for the eagle eye to spot the typo in15

Eqn. (2). The order of the maximum and expectation operators should be reversed, i.e., E$∼q($) maxα,w R (α,w|$),16

which means that NAT learns a general optimizer by optimizing the expected reward of the optimal architecture for any17

$. Actually, this objective is used in our code and works well in practice. We will release the code upon publishment.18

Q5. More details about solving three challenges: The first two challenges indicate the difficulties in solving the19

constraint c(α) ≤ κ in Eq.(2). To address these, we convert the constrained problem into an optimization problem20

that improves accuracy without introducing extra cost. To achieve this goal, we restrict the replacement of operations21

under the rule c(O) > c(S) > c(N) (i.e., the transition problem in Fig. 2(c)). For the third challenge regarding the22

expectation of reward, we estimate the expectation value by sampling architectures from q($) (see Algorithm 1).23

Q6. Training cost of NAT: The training of NAT takes 0.17 GPU days (also reported in Fig. 8 of supplementary).24

Q7. Effect of small space of NAT: Due to the problem differences between NAT and NAS, it is unfair to directly25

compare the effect of different search spaces. For NAO, the large search space designed for NAS is unnecessary for26

architecture optimization (see Q1). With a smaller space, NAT consistently outperforms NAO in Tables 1, 2, and A.27

Q8. Details about GCN: We have provided the details about GCN in Sec. B of supplementary and will make it clearer.28

To Reviewer 2 (R2):29

Q9. Comparison with random search & Results on resource-efficient cells: From Table A, NAT consistently30

outperforms the random search baseline and obtains promising results on MobileNetV2 and MnasNet.31

Q10. Differences from (Cao et al. , ICLR, 2019): The differences lie in 1) the tasks: NAT focuses on architecture32

optimization for better accuracy while the ICLR paper focuses on architecture compression for higher compactness;33

and 2) model generalization ability: NAT learns a general optimizer for any arbitrary architecture while the ICLR paper34

has to learn a compression model for each given pre-trained model. We will cite and discuss this work in the paper.35

Table A: More results on CIFAR-10. #P and #F denotes the number of parameters and FLOPs.
Method DARTS + Cutout MobileNetV2 MnasNet + Cutout NAONet-WS + Cutout

Acc. (%) #P / #F (M) Acc. (%) #P / #F (M) Acc. (%) #P / #F (M) Acc. (%) #P / #F (M)
Baseline 97.06 3.3 / 533 94.47 2.3 / 91 95.67 3.1 / 169 96.47 2.5 / 352

Random Search 95.17 ± 0.24 2.8 / 447 93.24 ± 0.23 2.0 / 70 93.71 ± 0.18 2.7 / 134 95.01 ± 0.21 2.1 / 303
NAO [24] 97.10 ± 0.06 3.6 / 583 95.05 ± 0.09 2.5 / 134 95.49 ± 0.08 3.3 / 195 96.55 ± 0.09 2.8 / 393

NAT 97.30 ± 0.07 3.0 / 477 95.37 ± 0.08 2.2 / 85 96.13 ± 0.06 3.0 / 152 96.95 ± 0.07 2.2 / 311

To Reviewer 3 (R3):36

Q11. Specific form of L($,w): We use cross-entropy (CE) to compute L($,w) = 1
N

∑N
i=1 CE(f$(xi;w), yi),37

where f$(xi;w) is the prediction of xi based the architecture $ parameterized by w, yi denotes the ground-truth label.38

Q12. How to apply “s.t. c(α) ≤ κ” in Eqn. (2) in optimization: Essentially, the constraint moves from the39

optimization process into the design of search space. Please refer to Q5 of R1 for more details.40

Q13. Will each computation architecture in the network be pruned in the same way? For all the considered41

models, we use the same pruned/optimized cell to replace all the original cells to build the network.42

Q14. Search space & improvement compared to NAO: Since NAT and NAO focus on different problems, i.e.,43

architecture optimization vs. architecture search, NAO exploits a NAS search space but NAT considers simple44

replacements to optimize architectures. In practice, NAT yields better results than NAO in both accuracy and complexity45

(see Table A). Instead, NAO may yield lower accuracy (e.g., ENAS) and higher cost (e.g., VGG) in Tables 1 and 2.46

Q15. Performance on strong baselines: Due to the problem differences mentioned in Q14, NAT and NAS cannot be47

replaced by each other. From Tables A, 1 and 2, NAT consistently improve the performance of different architectures.48

Although the improvement on ENAS is not that significant (but significant accuracy improvement on DARTS on49

ImageNet (1.3% in Table 2)), NAT has its own novelty and plays an important role in architecture optimization.50

Q16. Can NAT further boost NAONet? Based on NAONet, NAT is still able to obtain better architectures with higher51

accuracy and lower cost (see Table A). We will combine Table A and Table 3 in the paper.52

Q17. Usage of Cutout: For all the considered architectures, we follow the same settings of the original papers. In the53

experiments, we only apply Cutout to NAS based architectures on CIFAR-10. We will include these details in the paper.54

Q18. Missed related work. We will cite and discuss this work (So et al. , ICML, 2019) in the final paper.55


