- We would like to thank the reviewers for their insightful and helpful comments. We address some specific points raised
- below, and would like to thank the reviewers in advance for considering our responses.

Reviewer #3

Thank you for your comments.

Reviewer #4

- To my opinion, the optimality and the tightness of the results should be discussed We fully agree, a discussion was
- initially omitted due to space constraints. First note, in terms of the prior literature for graph labeling without switching
- lower bounds were proved in references [6,7]. Lower bounds for switching in the experts model are given in [1,21]. 8
- These are for the "log" and "mix" loss respectively, these are both unbounded loss functions compared to "mistake'
- counting. For these unbounded loss functions there is a $\Omega(\Phi \log(T/\Phi))$ term in their lower bound but as we speculate 10
- in line 328 in our model the dependence on T may be an artifact. A sketch of a lower bound on a line graph is provided 11
- below if desired this can be summarised into a theorem and included in the appendix if suggested by the reviewers.
- Observe that if we have a single graph-labeling problem on an n-vertex line graph with a cut size of 1 it is not difficult to 13
- force $O(\log n)$ mistakes; likewise if we have a uniformly labeled line graph hence no cuts and a single cut is introduced 14
- we can force $O(\log n)$ mistakes. On the other hand if we have a line graph with a cut size Φ we can force $\Phi/4$ mistakes 15
- by "removing" $\Phi/2$ cuts. Now for a switching sequence of graph labeling problems, μ_1, \ldots, μ_T , let $\Phi(\mu_t) \ll n$ for all t. For a labeling μ observe that we can divide the line graph into $\Phi(\mu) + 1$ segments, of length $\frac{n-1}{\Phi(\mu)+1}$, where each 16
- 17
- 18
- segment can be made independent of one another by fixing the boundary vertices between segments. We therefore have $\Phi(\mu)+1$ independent learning problems and can force $\Theta(\log\frac{n}{\Phi(\mu)})$ mistakes for every cut introduced and 1 mistake 19
- whenever we remove 2 cuts. Note beside the $\log \log T$ dependence there still remains some gap between this sketched 20
- lower bound and Corollary 7. 21
- Might seem as incremental combinations of graph prediction and online learning We believe that a logarithmic-time 22
- adaptive online algorithm for graph prediction is a significant improvement over the state of the art. Furthermore the 23
- bound in Theorem 2 is a new result for switching in the specialists setting with the asymmetric J() appearing in the 24
- 25
- How was α tuned in the experiments? Lines 286/622: α was tuned using exhaustive search over the ranges given in 26
- the appendices over 24 hours of training data, rather than optimally from the bound. 27
- Adaptive vs. oblivious adversary All formally numbered theorems, corollaries and lemmas as stated are correct with 28
- an adaptive adversary. However, if as discussed in lines 152-157, one would like to convert the deterministic mistake
- bounds with respect to the cut to expected mistake bounds with respect to the resistance weighted cut then it is sufficient 30
- for that conversion to assume an **oblivious** adversary. We can add this additional comment to lines 152-157. 31
- Would it be possible to get high-probability bounds? We suspect the technique in lines 152-157 could be adapted to a 32
- high probability mistake bound. 33
- 268: the sum should start at 1 Thank you for pointing that out.
- Could be interesting to plot the upper bound on the experiments We are happy to plot the computed upper bounds for
- the given data on the experiments, thank you for the suggestion. 36
- Measure of robustness (error bars/standard deviations) Error bars were initially omitted for 'neatness' in the plot. The 37
- standard deviations given in Table 2 in the appendix do imply an increasing robustness with larger ensemble sizes. We 38
- are happy to include a discussion on this and include error bars in the plot. 39
- More explanations on Alg. 1 with brief sentences defining A_t , Y_t . The notations A_t , Y_t are defined within the Algorithm, 40
- at their first appearance. Resistance distance (effective resistance) is defined lines 53-54, we can also supply the
- equation, 42

$$r(i,j) = \frac{1}{\min_{\boldsymbol{u} \in \Re^n} \sum_{(p,q) \in E} (u_p - u_q)^2 : u_i - u_j = 1}.$$

Reviewer #5

Thank you for your comments. In particular thank you for the additional reference we will add to line 239.