We thank reviewers for carefully reading our paper. We answer their questions below, but provide first two updates that are directly related to their remarks.

- **Subspace Selection:** Alg. 1 from the paper was motivated by Prop. 6 (l. 263). After benchmarking it carefully, we now believe it is not competitive with a projected gradient descent (PGD) on the basis vectors V of E (see right). The projection of V onto the set of unitary matrices is the unitary matrix in the polar decomposition of V. The complexity per iteration is that of computing MK and the polar decomposition. We initialize $V = \text{Polar}(AB)$ because this is the optimal solution when A, B are co-diagonalizable. We tested this new algo. in the synthetic noisy setting (p.7), Fig.1 below. The PGD improves on the fixed direction (canonical basis) approach when $k < 4$, and remains competitive when $k \geq 4$.

- **Map visualization using color transfer:** All reviewers have pointed out that experiments in the paper did not illustrate the lifted transport maps/plans, but focused instead on distances. We experimented MK maps on color transfer, an illustrative task to visualize maps’ properties. In the MK setting, we project images on the 1D space of grayscale images, relying on sorting-based algos for 1D-OT, before solving small 2D-OT problems on the corresponding disintegrations. We compare runtimes and visual results with vanilla OT and sliced OT below. MK results are visually very similar to full OT, with a $\sim \times 50$ speedup that is comparable to sliced OT. We will provide other illustrations.

Reviewer #1: ▶ algo in terms of optimality, convergence, runtime, etc. The runtime involves a complexity per iteration equal to computing the polar decom. and MK distance + gradient. Because the problem is non-convex we will stick to empirical evaluations and improve the presentation (p.7), as in Fig. 1 (right). ▶ applications do not seem to be terribly important [...] more popular ones. Agreed. Color transfer was added as an illustrative example. We are now looking into applications to domain adaptation and biological datasets (Waddington-OT). ▶ experiments section [...] a little confusing. We will add more context. The main purpose of the FID exp. (p.8) is to use data widely handled as samples from Gaussians. We show that even with a relatively small number of samples to estimate the covariance matrices, MK on the principal components has a stable behavior.

Reviewer #2: ▶ 1: E is indeed introduced later, l.62. We will fix this. ▶ 2: PCA with a (random) subset. This counter-example is to show that the stability of MK is dependent on the chosen subspace. Permuting the principal directions is an adversarial setting used to showcase this. ▶ 3: what does ‘underestimated’ mean [...] covariance matrices estimated [...] decent quality? In the setting of FID (p.8), $p = 2048$ and we used $n = 2050$. Fig. 2 (right) shows the coverage of sample to full (on all 200K data points) covariance matrices in Bures and L2 distance (averaged over 20 sample matrices). At $n = 2050$ the sample covariance matrices are close to having converged but not quite. However, the MK distance on the principal components is robust to the small amount of noise thus induced. We are glad to include this point in the discussion. ▶ 4: [...] value of d_2 [...] role of d_2 in this context? As per the caption in the paper (Fig.4, p.7) $d_1 = 4$, top row is $d_2 = 8$ and bottom row $d_2 = 16$. We will make this more explicit. As d_2 increases, the MK distance for $d_1 \leq k \leq d_2$ increases as more noise is fitted by the transport map on the projection subspace.

Reviewer #3: ▶ experimental verification of that chapter’s suggestions, especially of Algo. 1? Semantic mediation (p.8) is an example of using MK with prescribed directions (l.242-249), and FID experiments (p.8) of using principal components. We have added a verification of the new PGD algo in the experiment on noisy data (Fig 1). ▶ Experiments with synthetic data seems informative, but semantic mediation etc are not convincing. We added more semantic mediation examples. We are considering domain adaptation and biological datasets. ▶ Experiments on real data, and some more attention to selection of subspace E (experimentally). Agreed. The PGD approach is a first step in that direction (Fig. 1). We will also try it first in color transfer, domain adaptation and in biology (Waddington-OT).