
We would like to thank all three reviewers for their constructive assessment of our work.1

Reviewer 12

Importance of the experimental results: Non-vacuous generalization bounds are arguably desirable for delicate machine3

learning applications. Since such results are actually rare for neural networks, we consider important to show empirically4

that our approach leads to sound performances. We believe that this can encourage others to develop similar methods5

that will eventually lead to higher practical impact, following this work.6

Error bars: The reviewer concern is partially addressed in Section B.3 of the appendix, through the Monte Carlo7

sampling size effect study. Indeed, Figure 5 displays the test error — with error bars — for PBGNet and PBGNet`8

when varying the sample size. Note that each result is obtained by averaging over 20 repetitions of the learning9

procedure, each of them executed on different (random) train/test/valid dataset splits, and the stochastic gradient descent10

is initialized with different random weights. That being said, we undertake to push forward the variance analysis for the11

final version of the paper, as detailed in Reviewer 3 Experiments section.12

Reviewer 213

Choice of the activation function: A variety of activation functions exists in the literature and we obviously do not focus14

on the most common one. Nevertheless, the sign activation function is used in the binary networks cited in the paper,15

notably to reduce the memory footprint of such networks which could be embedded on small devices (e.g., Bengio,16

2009). In our context, the sign activation is crucial to apply the mathematical trick, and express the predicted outcome17

as the erf function. This gives a principled way of training the network and derive the PAC-Bayes generalization bound.18

Choice of prior: The bound holds regardless of the choice of the prior µ. In our experiments, we centered the prior on19

the SGD initialisation weights (as in Dziugaite and Roy, 2017), which corresponds to the real-life scenario where one20

does not have prior knowledge about the task at hand. The PBGNetpre variant of our algorithm opens the way for using21

a prior from a precedent learning task, as the transfer learning scenario mentioned in the paper (see Lines 219-222).22

Mismatch between theory and experiments: We worked hard to provide a rigorous and honest empirical study of our23

theoretical analysis strengths and weaknesses. It is certainly disappointing that there exist good predictors with trivial24

bounds (as mentioned by Rev. 3), but we still managed to obtain very tight bounds for more than decent predictors.25

Note also that we compared to tanh networks as this activation is similar to the erf function derived from our analysis.26

It allows us to use the same optimisation scheme and hyperparameter grid to compare the methods on equivalent basis.27

Reviewer 328

Improvement due to the binary activations: Relying on binary activation function allows us to express a close-formed29

solution for the PAC-Bayes bound, without other assumptions than the iid one. Another appeal of our bound: it relies30

more on the network architecture (e.g., dk, the layer width of each layer k, appears in Eq. 16) than previous results (in31

the seminal work of Dziugaite and Roy, 2017, a posterior distribution is used over a set of a neural network weights,32

without taking into account any other architecture specific information).33

Bounds for (a unique) binary activated networks: The reviewer is right to say that our analysis does not provide34

guarantees for a single deterministic binary activated (BAM) network, but for a continuous aggregation of such BAM35

networks. We clearly mention this in the introduction (Lines 26-27), but we agree that Line 16 may be ambiguous36

and we will rephrase it. That being said, several points are worth mentioning: (i) Even if computationally expensive,37

our predictor closed-form expression is deterministic; (ii) The prediction using Monte Carlo sampling empirically38

shows a small standard deviation consistently below 10−3, as discussed in the appendix (see Lines 432-448); (iii) In our39

experiments, we observed that predicting with the single Maximum-A-Posteriori BAM network generally gives results40

remarkably close to the aggregated PBGNet predictor (hinting that the posterior may be quite peaked). Recall that this41

unique BAM network represents exactly the same prediction function as its mapped tree predictor. This preliminary42

observation suggests that the bound can provide an appropriate guide to train a BAM network.43

Link with similar optimization procedures: There is definitely a strong connection between our optimization procedure44

and the REINFORCE method. We greatly thank the reviewer for pointing us the relevant literature; we were genuinely45

not aware of it. Indeed, we will rewrite parts of Section 3 to highlight these connections, and express our sampling46

scheme as a particular case of a general technique rather than a new one. As a matter of fact, we think this will enrich the47

paper, as our PAC-Bayesian analysis support existing strategies to train non-differentiable neural networks. Moreover,48

the connection with Variational Bayes (for a fixed C) is also very relevant, and will be mentioned in the paper.49

Experiments: We share the reviewer concerns about the lack of standard deviation analysis in Table 1. Given our50

computing resources, we cannot provide these results in this rebuttal. Nevertheless, we commit to produce for the final51

version of the paper a thorough stability analysis with 20 different random train/test/valid splits for all six datasets and52

five considered models of Table 1, for a slightly reduced hyperparameters search grid. Furthermore, we will add a study53

of the training sample size effect on PBGNet` and PBGNet with fixed parameters for the biggest dataset (mnistLH).54


