
We thank the reviewers for the insightful and constructive comments. In what follows, we provide our response to the1

major concerns raised.2

Reviewer 1: We agree with the presentation and reference issues raised, and will revise the paper as advised.3

Reviewer 2, Comments 1 & 2: We agree that log∗(n) is a small number and further reducing it is not interesting.4

However, we note that our focus is not to reduce the round number below log∗(n), but to achieve O(log∗(n)) rounds5

without relying on the unrealistic assumptions made in [4]. In particular, [4] assumes that ∆k (i.e., the difference6

between the means of the kth and (k + 1)th largest arms) is known, which is seldom the case in practice given that7

the means of all arms are unknown in advance. In contrast, our algorithms do not require any prior knowledge of ∆k;8

we allow users to choose an error parameter ε ∈ (0, 1) to strike a trade-off between accuracy and efficiency. In our9

submission, we discuss the above issues in Lines 80-88 and 103-106. We also note that our O(log∗
k
δ
(n)) result does not10

contradict the Ω(log∗(n)) lower bound in [4], since the latter regard k and δ as constants, whereas we consider them to11

be variables. If we also consider k and δ to be constants, then our result would match the lower bound in [4].12

Reviewer 2, Comment 3: We will explicitly define log∗
b(n) as advised.13

Reviewer 2, Comment 4: We have considered the suggested approach (which tests ∆ = 1, γ, γ2, · · ·), but found14

that its complexity is inferior to ours, as explained in the following. Assume that the approach stops testing when15

∆ = γ2t. For the PAC setting (see Problem 1 in our submission), since γ2t < ∆k, the suggest approach has to call16

the algorithm in [4] O(log ∆−1
k ) times, each of which requires log∗(n) rounds. Therefore, its round complexity is17

O(log ∆−1
k · log∗ n), which is inferior to our O(log∗

k
δ
(n)) result. For the exact top-k setting (see Problem 3 in our18

submission), let us consider a bandit instance where we have (i) k arms with means θ, (ii) n − k arms with means19

θ −∆k, and γt = 2∆k (i.e., γ2t = 4∆2
k). If the suggested approach stops testing at ∆ = γ2t, its query complexity is20

at least O
(
n

∆4
k

log k
δ

)
, which is inferior to our query complexity O

(
n

∆2
k

log
k·log ∆−1

k

δ

)
.21

Reviewer 3, Comment 1: For the proof of Lemma 1, we note that θ̂i∗ ≥ θ∗i − ε/8 holds with high probability even at22

the very beginning. In particular, in the first iteration (i.e., r = 1), Sr is exactly the same as the input arm set S (i.e.,23

S1 = S), and Algorithm 1 samples at least 32
ε2 log k

δ1
times for every arm in S1. Therefore, every arm i∗ is initialized24

for θ̂i∗ . Based on Hoeffding bound, we have θ̂i∗ ≥ θ∗i − ε/8 with probability at least 1− δ1
k , for the case of r = 1.25

The case for r > 1 follow from an induction on r, as shown in Lines 362-377 in our supplementary material.26

Specifically, suppose that θ̂i∗ ≥ θ∗i − ε/8 holds in the (r − 1)-th iteration. If θ̂i∗ is NOT updated in the r-th iteration,27

then θ̂i∗ ≥ θ∗i − ε/8 remains. Meanwhile, if θ̂i∗ is updated in the r-th iteration, then we can apply the Hoeffding bound28

to show that after the update, θ̂i∗ ≥ θ∗i − ε/8 holds with at least 1− δr
k probability. By the union bound, the probability29

that θ̂i∗ ≥ θ∗i − ε/8 holds in all iterations is at least 1− δ
2k (see Eq. (7) in our supplementary material).30

We will revise the proof of Lemma 1 to avoid confusions over the cases of (i) r = 1 and (ii) r > 1 and θ̂i∗ is not updated31

in the r-th iteration.32

Reviewer 3, Comment 2: Regarding the comparison between δE and other fixed confidence BAI algorithms: we have33

actually done such a comparison in our submission (see Figures 1 and 2). In particular, we compare δE and k-δE34

against ME [5] and ME-AS [6], both of which are state-of-the-art methods for fixed confidence instance-independent35

BAI. Our results demonstrate that δE (resp. k-δE) significantly outperforms ME (resp. ME-AS) in terms of query cost.36

In addition, in Section 4.2, we use δE as a subroutine to construct an algorithm (referred to as EG-δE) for exact (instead37

of PAC) top-k arm identification, and we show that it outperforms the state-of-the-art elimination-based method [8] and38

UCB-based method [17].39

Meanwhile, for δER, we find it difficult to compare it with fixed budget BAI algorithms, due to the significant difference40

in the number of rounds that they require. Specifically, existing fixed budget BAI algorithms (e.g., [8]) require at least41

log(n) rounds, whereas δER requires at most log∗(n) rounds. This makes it difficult to identify a setting of round42

numbers to conduct a fair comparison of the algorithms.43

Reviewer 3, Comments 3 & 4: We will clarify the motivation for multiple testing and detail the Exponential-Gap-44

Elimination algorithm as advised.45


