
We thank the reviewers for their thorough and comprehensive reviews. We have condensed our responses on what we1

deemed to be the most important highlighted points.2

Reviewer 2 “Where else other than learning problems this framework can be used?”3

Our introduction can be expanded with the following known applications that rely on estimates from sampling (in our4

case, they would be set in a secure environment and provide security and privacy): statistical quality control, statistical5

data analysis of large datasets (e.g., graphs), auditing (e.g., a financial institution can allow a regulator/data scientist to6

analyze only several samples from its data).7

“More empirical analysis.” Related work on NoisySGD [3,45] also used CIFAR10 and MNIST in the experiments.8

Given the opportunity, we are happy to add our experiments on categorical data.9

Reviewer 3 “The proposed algorithms are simple, and rely on employing oblivious shuffling along with careful10

replication of elements. From a technical perspective, the techniques and their analysis is rather straightforward. The11

results appear to be novel, but not particularly original or technically deep.”12

• We believe that simplicity is not a disadvantage when designing security algorithms since it minimizes a potential13

for an implementation error and, hence, a vulnerability;14

• Simplicity may increase chances of adoption among practitioners. One key contribution of widely used Path ORAM15

is its simplicity compared to first oblivious array schemes based on “sophisticated deamortized oblivious sorting and16

oblivious cuckoo hash table” [“Path ORAM: An Extremely Simple Oblivious RAM Protocol” by Stefanov et al.];17

• Finally, though simple, it was not straightforward to simulate the same element distribution as SWO and Poisson in18

oblivious manner (i.e., we proposed to rely on pseudo-random permutation to simulate the sampling distribution) and19

to do so in one pass over the data (our design involved substituting real keys with those drawn by the permutation).20

“. . . the schemes seem to work only for the case where k=n/m samples of size m each are needed from a data set of size21

n. Not clear if/how they might be extended to more general sampling scenarios.”22

We thank the reviewer for pointing out general sampling cases. In fact, our algorithm can support them:23

• Given a sequence of sample sizes m1,m2, ..,mk (n =
∑
mi), Alg. 1 will not change. How-24

ever, samplemember(i, j) (Alg. 2, Appendix) will check if ρi(j) ≤ mi instead of ρi(j) ≤ m to determine25

if j is in sample i or not.26

• For k > n/m one can invoke the algorithm again and for k < n/m one can ignore additional samples.27

• k = n/m or n =
∑
kmi achieve the best performance since the cost of shuffling is amortized.28

Reviewer 4 We are grateful to the reviewer for their positive feedback and pointing out the significance and originality29

of our work. We are happy to integrate related work with the introduction.30

Reviewer 5 “1. Clearly state benefits over naive sampling multiple batches in a TEE after an oblivious shuffle.”31

The naive sampling would incur (ε
√
2T log(1/δ′) + Tε(eε − 1), T δ + δ′)-DP after T samples. Both of the DP32

parameters for our sampling approaches will be O(γ)× smaller, where γ = m/n ≤ 1 and m is the sample size.33

DP Analysis: The algorithm suggested by the reviewer cannot rely on the γ “privacy amplification” since the adversary34

is able to observe which elements (up to a permutation) appear in which samples (e.g., how many and which samples an35

element appears in and what is the co-occurrence of elements across the samples). Even though it does not know which36

element it is exactly, the access pattern reveals overlaps between the samples; overall this is not sufficient for hiding37

sample identity. Hence, to analyze it, one has to rely on strong composition theorem, leading to DP guarantees that are38

worse than algorithms from Table 1. (Shuffling in Table 1 relies on the fact that shuffled samples do not overlap.)39

“2. . . . the authors can evaluate the performance of the techniques after tuning at the same privacy level (rather than for40

the same number of epochs). . . . how tuning has been done. . . . It is unclear that the best values for learning rate and41

minibatch size will be the same for all the evaluated algorithms.”42

In Figure 1 we show privacy-accuracy tradeoff for sample sizes 200 and 600. For example, for size 200: with privacy43

level fixed at ε ≤ 0.81: the accuracy is 94% for Poisson (ε = 0.47), 90% for SWO (ε = 0.47), and 78% for Shuffle44

(ε = 0.81). To keep the same baseline, we did not perform tuning for individual algorithms; all parameters, including45

minibatch/sample size, is the same and follows Abadi et al. [3].46

Impact concern: Our work focuses on deploying DP algorithms to build a secure data analysis system while achieving47

strong privacy guarantees in the view of practical constraints. By designing oblivious sampling algorithms we can, at48

the same time, make use of the TEEs and the rigorous DP analysis based on sampling.49


