
We sincerely thank all the reviewers for their meticulous work and their helpful and detailed comments. Specifically,1

thank you for your suggestions on expanding upon our current figure/simulations as well as adding more intuition and2

high level ideas so as to help the reader through the admittedly complex proof. We will gladly incorporate them!3

[To Reviewer #1:] Thank you very much for your hard work and your supportive comments for our paper!4

1."perhaps between section 3 and 4 . . . what would be great." Thank you for this suggestion. We will update the revised5

version analogously.6

2."Regardless,... supplementary article." In section 14.4.2 titled "Variable Step Size", the step-size ηt = B
ρ
√
t

is used in7

SGD. For the Stable manifold theorem in line 30, we refer to Chapter 5 Theorem III.7 in "Global Stability of Dynamical8

Systems" by M. Shub and in line 130, we refer to Section 2.7 in "Differential Equations and Dynamical Systems" by L.9

Perko.10

3."Might be interesting to add a note... Is this correct?" Yes, for the constant step-size α, we need α to be less than the11

inverse of largest eigenvalue ([10], Lee et al, 2019). In the case of vanishing step-sizes the upper bound is unnecessary12

from an asymptotic perspective, but it is practically better to start with α0 < 1/L.13

4."Does the paper... stuck in a saddle point" The last parts of the statements of Theorem 4.1 and Corollary 4.2 assert14

that almost all points in a neighborhood of a saddle point will be transported out of the neighborhood in a finite number15

of steps. The convergence criterion "f(xk+1) ≤ f(xk)− αk(1− αkL
2 )||∇f(xk)||2 for all k" for convex functions can16

be used in neighborhoods of local minima (e.g.p126, Convex Optimization Algorithms, by Bertsekas). It asserts that17

once a point enters a neighborhood of local minimum, it converges. So convergence can be attained by combining these18

results.19

5."This is of course... that area of study." Recent progress (e.g.[6] and Jin et al 2017) show that perturbed gradient20

descent can escape saddles efficiently and then find approximate local minima in polynomial time. The efficiency of21

deterministic methods relies heavily on the specific structure of functions and initialization. In "GD can take exponential22

time...", Du et al constructed a function for which GD is significantly slowed down by saddles. But GD works well for23

the functions of matrix factorization(Jain et al 2017), phase retrieval, dictionary learning and so on (pointed in [10]).24

Generic efficiency results for first order methods without noise is an interesting direction for future research. Especially25

for variable step-sizes, very little is known. Methods using information of Hessian and curvature are studied in recent26

references (e.g."A geometric analysis of phase retrieval" Sun et al and "On noisy negative curvature descent" Liu and27

Yang, "A generic approach..." by Reddi et al, 2017). We will expand upon these connections in the revision.28

[To Reviewer #2:] Thank you very much for your hard work and your supportive comments for our paper!29

"If it was a space issue..." The case of coordinate descent is left open due to technical difficulties. Our main result30

(Theorem 1.1) relies on the fact that the differential of update rules can be written as I −αkH where H has no complex31

eigenvalues. The differential of coordinate descent can lead to complex eigenvalues, and thus our stable manifold32

theorem (Theorem 4.1) cannot be applied as is. Actually the issue is even more complicated. Suppose we had a33

generalization of Theorem 4.1 that addresses complex eigenvalues, it is not clear if it would imply the desired result for34

coordinate descent, because the differential of coordinate descent update rule cannot be written in the form of I − αkH35

with H diagonalizable. New ideas will probably be required to address these intricate issues. We will make a formal36

remark about this to hopefully stimulate future research on this important direction.37

[To Reviewer #3:] Thank you for your work, comments and suggestion on improvements.38

1."Since, the latter condition is no longer required, ... unclear." The condition of
∑
α2
k < ∞ is unnecessary in the39

deterministic case. It can be understood in the following sense:40

Intuition: 1. The reason to introduce
∑
α2
k <∞ is to make the total variance of the increments finite (e.g. p699 of [16]41

R.Pemantle,1990). But deterministic methods can be seen as stochastic methods with noise identically 0, so the "total42

variance" is identically 0 (which is finite) for any step-sizes. 2. Consider the case when the step-size is a constant α43

(then
∑
α2 =∞). We already know that our result is true in this case since this is exactly the result of [10] Lee et al,44

2019. So the condition
∑
α2
k =∞ should not cause any obstruction in our deterministic setting.45

Technical sketch: Formally, the proofs of Theorem 4.1 and Corollary 4.2 do not require
∑
α2
k <∞. Briefly the proof46

is to use the Banach Fixed Point Theorem to show the existence and uniqueness of the stable manifold. The place47

where property of αk is actually used is in the proofs of Lemma C.1 and Lemma C.2, where we show that the sums48

Rk =
∑∞
i=0 αk+1+i

∏k+1+i
j=k+1(1 − αjλ)−1 with λ < 0, and Sk = αk +

∑k−1
i=0 αi

∏k
j=i+1(1 − αjλ) with λ > 0 are49

bounded as k →∞. To see that the restriction of
∑
α2
k <∞ is unnecessary, consider the case of constant step-size50

(which trivially implies
∑
α2
k =∞), then Rk and Sk become geometric series with ratios less than 1, so boundedness51

immediately follows.52

2. "Do the additional conditions (lines 167-168) lead to elimination of the condition?" That is correct. These conditions53

are used to obtain the expression in Line 54 in the supplementary material.54


