
General Comments. We thank the reviewers for their valuable feedback. As the reviewers point out, the deep1

equilibrium model offers a new perspective on deep networks. Instead of actually creating a deep stack of layers,2

the central idea of this paper is to develop an alternative view of deep learning where we directly optimize for and3

backpropagate through an equilibrium state of the network (which, to the best of our knowledge, no deep approaches4

have explored or targeted to date, and similar ideas such as the Neural ODE differ significantly in their formulation).5

The way DEQ “ignores” depth and solves for the equilibrium suggests a different view of output modeling and further6

leads to certain interesting properties beyond the obvious reductions in memory footprint (cf. Theorem 1 and 2).7

Importantly, compared to prior implicit-depth approaches such as Neural ODEs, in this work we also demonstrate the8

potential power and applicability of such models on practical, large-scale and high-dimensional datasets. In fact, we are9

able to get 24.0 ppl using a slightly larger DEQ-Transformer than in Table 3, which outperforms the current SOTA10

result that can run on GPUs (these results will be reflected in the revision). We believe that the equilibrium view of deep11

learning could lead to many directions of research, in both designing better sequence models (e.g., via better-designed12

fθ, see Theorem 2) and studying the properties of the equilibrium optimization.13

We also agree with the reviewers that the runtime discussion should be moved into the main text. We briefly include14

some of our observations below and will have a more thorough analysis of the relationship between threshold ε,15

training/inference speeds, and modeling accuracy in the experiment section of the revision. We now address specific16

questions/comments raised by each reviewer.17

Review #1. We thank reviewer #1 for the valuable feedback. As we highlighted in the general comments above, the18

DEQ approach is very different from techniques like gradient checkpointing (GC). In essence, GC enables training an19

L-layer network using O(
√
L) memory, without actually affecting the computations themselves (GC only recomputes20

certain blocks). It is an implementation-based methodology that is practical on almost any layer-based network. On21

the other hand, continuous/implicit-depth models such as Neural ODE and DEQ reduce memory requirements by22

formulation rather than implementation, as these models usually come from certain black-box solvers and analytical23

backpropagation.24

Quantitatively, we have followed the reviewer’s suggestion and compared GC and DEQ using a 70-layer TrellisNet (w/25

aux. loss, etc.) on WT103. We find that GC works best when we checkpoint after every 9 layers, and record a 5.2GB26

memory footprint at training time under these conditions. This is 57% more than the DEQ memory footprint (see Table27

3). The training speed of GC is approximately 1.6× slower than original training, while DEQ can be up to 2.4× slower28

(this is an updated result, see our response to reviewer #3 for more details). More fundamentally, though, we should29

emphasize GC offers O(
√
L) memory consumption while DEQ is O(1). (And recall we are dealing with L→∞ ...)30

Review #3. We thank reviewer #3 for the comments, and for taking the time to check our proof and read our code.31

We also feel that DEQ provides a new and exciting direction for further designing better implicit-depth models as well32

as exploring the properties of equilibrium training.33

We originally picked the values of ε just to ensure that we get a fixed point that is as accurate as possible under the34

superlinear convergence of quasi-Newton methods. However, since the submission we have further observed that35

the conclusion from Figure 4 also holds in training. By using larger ε or a smaller iteration limit, we find that the36

model can be trained much faster with only a small degradation in performance (e.g., we get 24.3 ppl on WT103 with37

DEQ-Transformer by limiting the max # of Broyden iterations to 35; the same model can yield 24.0 ppl using a smaller38

ε). We generally find that ε < 0.01 is sufficient. With that observation, the DEQ training time is now around 2-2.4×39

that of the original networks (see Table 4) without materially affecting accuracy. We are running more settings and will40

provide a detailed discussion of this (and some caveats) in the revision.41

Regarding initialization, we find that most commonly used initialization schemes with small values (around 0) should42

suffice. It is important to ensure that the model starts with a small operator norm in the weight matrices. DEQ is not43

sensitive to any specific initialization scheme because non-linearities such as σ/tanh and LayerNorm help make fθ44

contractive (and stable). We are happy to discuss this in the revision.45

Review #4. We thank reviewer #4 for the comments. DEQ essentially provides a way to model a deep network at its46

infinite limit. Deep learning research indicates that more layers frequently lead to better results, and DEQ provides a47

way to explore the limits of layer stacking without paying an exorbitant price in memory or computation. As highlighted48

in our response to reviewer #3, we can also further reduce the training/inference cost by less accurate (but still good49

enough) fixed-point estimation using larger ε, which can be an interesting topic for further research. In addition, while50

we did not observe any “unstable” fixed points empirically, we believe it is important to ensure that the transformation51

fθ itself is stable and contractive (e.g., ideally, having Jfθ operator norm less than 1 would be a sufficient condition).52


