
We thank the reviewers for their valuable feedback on our work, indicating its novelty (R1,R3) and effectiveness1

(R1,R3), acknowledging the potential interest and utilization of Grid Saliency in the explainability community (R2,R3).2

R1 and R2 raised a point about the practical impact of our work: how practitioners would use Grid Saliency (GS) and,3

in particular, how to use its context explanations of error cases to improve performance. We motivate its utility for dense4

prediction networks (which is novel) for the following applications: 1) Architecture comparison: Context explanations5

produced by GS can be used to compare architectures wrt. their capacity to either learn or to be invariant towards6

context. E.g., in Fig. 1a the segm. network with MobileNet (MN) backbone learnt to rely more on context in contrast to7

its variant with a more powerful Xception (XC) backbone, which can correctly predict train w/o looking at rails. 2)8

Network generalization via active learning: Existing context biases might impair network generalization. E.g., cows9

might mostly appear on grass during training. A network that was trained and evaluated on this data and picked up that10

bias will perform poorly in real-world cases, where the cow, for example, appears on road (in Fig. 1b top right, the cow11

gets misclassified as horse). Here, removing all context yields a correct classification (Fig. 1b bottom row) and analysis12

of the context explanations (Fig. 1b top left) produced by GS shows responsible context for the erroneous classification.13

Now, actions can be taken, such as targeted extra data collection. 3) Adversarial detection: GS can be used to detect14

and localize adversarial patches outside object boundaries (e.g. Lee and Kolter [2019]). Cases for which the salient15

regions lie largely outside an object, would strongly indicate the presence of an adversary or misguided prediction.16

R1 [Relationship between gradient and perturbation methods]: We agree that gradient- and perturbation-based saliency17

methods use different techniques. However, both aim to compute a relevance map for an input. We compared these18

maps for different methods to evaluate how well they could detect and localize relevant input parts (controlled by our19

synthetic data). Hence, wrt. the property of indicating relevant input parts, we think the two techniques are comparable20

and next discuss their more detailed comparison.21 MN MN XC
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Figure 1: Qualitative examples.

R1 [More comparative analysis on synthetic22

dataset]: For more detailed analysis, we refer to23

Sec. S1.3-S1.5 in sup. mat. From Fig. S4 and24

S6 we observed that for context bias detection25

and localization, respectively, gradient methods26

are prone to high variations dependent on the27

background texture choice, as by design these28

methods are more sensitive to high frequency patterns and thus lead to unfaithful explanations Adebayo et al. [2018]. In29

contrast, perturbation-based GS can consistently detect and localize context bias independent of texture choice (partially30

due to perturbing larger image regions). We also compare gradient and perturbation methods across different networks31

in Fig.S9-10, confirming the superior performance of the perturbation GS. We will add these findings to Sec.4.2.32
Table 1: Context class statistics of errors.

Context class
GT Pred.(R) road bike veg. build. sidew. rider person

rider person 0.20 0.06 0.22 0.21 0.06 0.05 0.01
rider rider 0.15 0.30 0.08 0.09 0.10 0.07 0.01

person person 0.11 0.09 0.09 0.28 0.16 0.00 0.07

R1 [Quant. results on Cityscapes]: We complemented the quantitative33

results in suppl. Sec. S2.2 (Fig. S11) with an analysis of context expla-34

nations on erroneous predictions. Tab. 1 shows the case where rider was35

misclassified as person. We used the intersection of GT mask and (error)36

prediction as request mask R, and similarly to Fig. 5 and Fig. S11 computed semantic class statistics inside the salient37

context. Note that for correctly classified riders context saliency mostly focuses on bike (30%), but is almost non-present38

(6%) when rider is mistaken as person. A detailed quantitative analysis with more error cases will be added to the paper.39
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Figure 2: Effect of optimization parameters
on the synthetic dataset. Red points depict the
parameters used in our experiments.

R2 [M∗
grid computation, effect of R and optimiz. parameters]: M∗

grid is40

obtained by optimizing Eq.2 with SGD (see Sec. S1.2, S2.1 in sup. mat.),41

thus there is no guarantee for global convergence. The loss function in42

Eq.2 aims to find a balance (partially controlled by λ) between penalizing43

the salient region size and the preservation loss, which measures how well44

the softmax scores inside the request mask R were restored to their initial45

values, prior to perturbation. This loss is by definition normalized by the R size, thus the size of R doesn’t directly46

influence the optimization convergence. In Fig. 1c we show the effect of R size, where saliencies for each R were47

obtained with the same optimiz. parameters. Independent of R size, for all riders salient context always falls on bikes.48

In Fig.2 we report the effect of optimization parameters (learning rate, λ, mask initialization) on context biased detection49

and localization performance (CBD, CBL). GS shows comparable performance over a broad space of parameter50

settings (experiencing smooth degradation with suboptimal parameter choices), with λ clearly controlling the trade off51

between bias detection and localization quality (higher λ value leads to a smaller salient region, see L130-136). In our52

experiments the optimization parameters (red points in Fig.2) were set up by jointly looking at the two loss term values53

in Eq.2 and visual inspection of saliencies over a small image subset. We will add this discussion to the sup. mat.54

R3 [Results on other dataset]: We agree with R3 on evaluating GS on different segmentation datasets. In Fig. 1a, we55

show some first examples of context explanations on COCO, which we will add to and discuss in the paper.56

R3 [Literature]: We will add the literature on the importance of context Uijlings et al. [2012], Azaza et al. [2018].57


