
We thank three reviewers for admitting the importance of our work. We hope that the following explanation will help1

the reviewers to recognize the novelty and significance of our paper further.2

To Reviewer 1: The minor points you provided are also of our concern and we will remark them in Discussion.3

Although the empirical Fisher is not necessarily representative of the geometry (especially, when the number of samples4

is very small), it always determines NTK’s eigenvalues through a dual representation F ∗. The NTK determines the5

optimization of sufficiently wide DNNs. We appreciate if you would read our responses to Reviewer 2 and 3. The6

experiment shown in the below will also respond to your concern on trained networks.7

To Reviewers 2 & 3: Difference of this paper from Karakida, Akaho & Amari, AISTATS2019 [21]8

We would like to emphasize that our work greatly differs from [21]. [21] has not shown any result on normalization9

methods. Moreover, our work is not just a simple re-application of calculation in [21]. Technically speaking, [21]10

evaluated the first-order term of F ∗ and neglected lower order term (i.e., the second term in (S.6)). In contrast, our11

paper enables researchers to evaluate this second term. It is essential because the batch normalization makes the first12

term comparable to the second term and requires careful evaluation of the second term. In particular, we found that13

a new quantity, i.e., the convergence rate q (or q∗), plays an essential role in the second term and newly developed a14

framework to evaluate it in Section B.1.3. This enlightened the new direction of theory and enabled us to give the novel15

insight into the use of normalization methods.16

To Reviewer 2: Experiments on training DNNs and learning rates necessary for convergence17
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Figure 1: Exhaustively searched training losses depending
on M (width) and η (learning rate). We trained deep ReLU
networks for 1000 steps. Losses exploded in gray area
(i.e., were larger than 103) and red lines show theoretical
values of 2/λmax. Experimental setting: αl = C = 1,
L = 3, T = 1000, (σ2

w, σ
2
b ) = (4, 1).

We agree that experiments will further increase our con-18

tribution. As Reviewer 2 recommended, we add an exper-19

imental result on the training with the steepest gradient20

descent argued in Section 5. We did it in the same set-21

ting as [21]; we trained DNNs with various widths by22

using various fixed learning rates, providing i.i.d. Gaus-23

sian input samples and labels generated by corresponding24

teacher networks. Our Fig. (a) is just a reproduction of25

Fig. 2 (left) in [21]. The theoretical value η = 2/λmax26

(Eq.27) computed on the FIM at random initialization27

predicted well the learning rate necessary for the gradient28

method to converge. An impressive result is Fig. (b). We29

confirmed that the batch normalization (mean subtraction)30

in the last layer allows larger learning rates for conver-31

gence and they are independent of width. This result32

coincides well with Reviewer 2 expectation. Technically33

speaking, we computed the red line in Fig. (b) by using34

the lower bound of λmax, i.e., η = 2/(ρα(κ1 − κ2)).35

One can also suppose many other experiments related to36

our theory, but they are too many to enclose in a single paper. Besides, experimental studies in more large-scale37

networks and datasets are not so easy task because of the computational cost of the huge FIM. So, we expect that our38

theory and the above experiment will encourage many researchers openly discuss and study the possibility of our results39

in follow-up works.40

To Reviewer 3: The NTK (neural tangent kernel) determines optimization and loss landscape in wide DNNs41

Answering to your concern, we would like to emphasize recent findings on NTK shown in Jacot et.al., NeurIPS201842

(cited as [19]) and Lee et al. arXiv2019 (cited as [20]). In particular, the work [20] clearly proved that the sufficiently43

wide DNNs works as a linear model expanded around random initialization θ0:44

f(x; θt) = f(x; θ0) +∇θf(x; θ0)>ωt, (1)

where ωt := θt − θ0 and t means the step of the gradient descent shown in lines 284-288. [20] proved a surprising fact45

that ωt is sufficiently small for any t > 0 and the network can achieve a zero training error in the large M limit. This46

means that there is always a global minimum sufficiently close to random initialization. Therefore, the optimization of47

the wide DNN becomes a convex problem and the loss landscape becomes convex. This convexity is also proved in [19]48

and the FIM at random initialization determines the loss landscape through a quadratic form ω>t Fωt. Thus, its second49

derivative (Hessian) coincides with the FIM in the large M limit. We hope that the above additional explanations will50

further clarify our paper’s significance, and we will appreciate if you could increase your score.51


