Thank all the reviewers for their valuable comments and suggestions!

**Response to Reviewer #1**

1. Section 3.2: Each row of \( G_y = g(x_i) \) is a distribution independent from other rows, and therefore is in a non-autoregressive manner (see Line 126-129 for more details). At the end of Section 3.1, we show that previous works [9,12,22,5,4] implement \( G_v \) as a matrix with one-hot rows due to the complexity brought by the autoregressive computation. This motivates us introducing non-autoregressive generation for the prototype in Section 3.2.

2. Table1: The number of parameters and inference time refers to the WMT14 En→De translation model.

3. Prototype: In [4,5], a prototype refers to an intermediate target sequence in the that will be further refined. We follow the usage of term “prototype” with similar motivation. Different from the retrieved/generated sentences that can be regarded as “hard” prototypes, we introduce the prototype in a soft manner where the expectation of the intermediate sequence is calculated. Furthermore, the term “prototype” also refers to the “mean” (i.e., average) of a set of points in a cluster [*]. In our paper, it refers to the average of embeddings, matching the sense of “prototype” used in clustering.

4. **Table1**: The number of parameters and inference time refers to the WMT14 En→De translation model.

5. Case study: (a) Our goal of the case study is not to claim that the proposed method is always beneficial in the two ways we described, but to use the two examples to illustrate how exactly the method produced better translation results in those two randomly picked examples. For this purpose, our analysis is useful in that it revealed two benefits in the two examples. (b) We agree that it is better to more systematically analyze the benefit of the proposed method.

**Response to Reviewer #2**

1. Eqn.(3) is an expectation of embeddings that carries the first-order statistical information of all potential translations. The mean of vectors geometrically represents the centroid of multiple vectors, so it is a meaningful representation.

2. \( g^\kappa \) is normalized by keeping only top-\( \kappa \) largest probabilities and then scaling. For example, for \( g = (g_1, g_2, g_3) \) with \( \kappa = 2 \) and \( g_1 > g_2 > g_3 \), \( g^\kappa = (g_1/(g_1 + g_2), g_2/(g_1 + g_2)) \).

3. Parameter reuse: (a) We set Net = Enc in our experiments only to minimize the total number of parameters. Please note that it is not inherent setup of the proposed method (Line 168-169). Net can generally share or not share parameters with Enc, or even use a different network architecture (e.g. with different number of layers / hidden dimension, etc). We also show in Appendix B.1 that for WMT En→De, the proposed method achieves comparable performance with/without parameter reuse. (b) We work on IWSLT2014 English→Chinese, a distant language pair following your suggestion. We use the Transformer with a 6-layer encoder and decoder, with the hidden dimensions and filter sizes set as 512 and 1024 respectively. The baseline is 15.4 BLEU score and the proposed method achieves 15.8/16.0 BLEU with/without parameter reuse. We would like to highlight that one advantage of the proposed approach is that it’s general, and in the future we will further evaluate it with more syntactically different language pairs.

4. Token-level translation: We use token-level mapping for the maximum efficiency. We agree that it makes less sense for the “middle” tokens. However, the impact would be relatively small given that: (a) the vocabulary and training corpus is dominant by the standard words rather than the “middle” tokens. For example, for WMT En→De, over 65% vocabulary are standard words and they make up for over the 88% of total word frequency in the training corpus; (b) The soft prototype \( R \) is fed to Net and encoded into higher-level contextual representations, which can intuitively provide rich global information that helps the decoder decision making.

5. Case study: (a) Our goal of the case study is not to claim that the proposed method is always beneficial in the two ways we described, but to use the two examples to illustrate how exactly the method produced better translation results in those two randomly picked examples. For this purpose, our analysis is useful in that it revealed two benefits in the two examples. (b) We agree that it is better to more systematically analyze the benefit of the proposed method.

**Response to Reviewer #3**

1. Thanks for your suggestions. We will revise the writing in the next version. As for the different network incarnations, we studied the parameter reuse and found it achieves comparable performance on En→De translation with/without parameter sharing (Appendix B.1). We also tried a shallower network for Net with a 2-layer Transformer encoder, and achieve 29.29 BLEU in En→De translation. We will explore more on different network incarnations in future work.

2. We achieve the state-of-the-art results in Newstest 2014, 2015 and 2017 in the semi-supervised setting in Section 4.2 (detokenized sacreBLEU reported in Table 3), which are the best performances so far under the same training data setting to the best of our knowledge.

3. L260: Thanks for the detailed suggestion. We will revise the analysis and make it more accurate.