
We thank the three anonymous reviewers for their insightful and largely positive comments!1

Responses to Reviewer 1 Thanks again for your thoughtful comments.2

Lemmas 3.1 and 3.2. Regarding Lemma 3.1, the novelty is the existence of the function q(x). If q(x) = 1, this is well3

known in the literature, as the reviewer pointed out. We will make this point clear in the revision. Regarding Lemma4

3.2, while we do not see this as a key contribution of the paper, it is not clear to us whether it follows from the results of5

Smola and Schoelkopf. This is because they consider greedy selection of a subset of training data, while we consider6

selection of points from the entire domain. If you know any existing work that explicitly states Lemmas 3.2, could you7

please let us know when you update your review? We will cite it and remove our proof in Appendix.8

Lemma 4.1. Thank you for the suggestion, which we follow in the revision.9

Proof of Proposition 4.2. Thank you very much for pointing this out. We agree that our argument of deriving (v) was10

flawed. We make the following correction, which we believe makes Proposition 4.2 still valid. (We will correct the proof11

of Prop. C.2 in a similar way.) We start from (iii), which can be stated as that there exists n0 ∈ N such that kXn
(x, x) ≤12

exp(−(c1/c2)n1/d) holds for all n ≥ n0. Now, define c4 > 0 as a constant such that c4 exp(−(c1/c2)n
1/d
0 ) = c3, and13

let c5 := max(c4, 1). Then, for n < n0 we have c5 exp(−(c1/c2)n1/d) ≥ c4 exp(−(c1/c2)n1/d) ≥ c3 ≥ kXn
(x, x),14

where the last inequality follows from (iv). For n ≥ n0, we have c5 exp(−(c1/c2)n1/d) ≥ exp(−(c1/c2)n1/d) ≥15

kXn(x, x). Therefore we conclude that kXn(x, x) ≤ c5 exp(−(c1/c2)n1/d) holds for all n ∈ N and x ∈ Ω.16

Responses to Reviewer 2 Thanks again for your insightful comments.17

The estimator in line 120. This is a very good point, and thanks for pointing it out. We agree that the current18

presentation is confusing, and will make a correction. The quadrature estimator suggested in [8] (and used for WSABI-19

M [13]) can be described as
∫
EǵT (ǵ(x))π(x), where ǵ ∼ GP(mg,Xn

, kXn
) is the posterior GP. On the other hand, the20

estimator in line 120 is
∫
T (mg,Xn

(x))π(x) and used by WSABI-L [13]. As we describe below, these two estimators21

are both consistent with the same convergence rates, and all theoretical guarantees obtained in the paper are applicable22

to the estimator
∫
EǵT (ǵ(x))π(x) as well. Intuitively, this is because the posterior ǵ ∼ GP(mg,Xn

, kXn
) contracts23

around the posterior mean mg,Xn
as n increases, and EǵT (ǵ) and T (mg,Xn

) get similar. We note however that for a24

finite n, it is not clear which estimator is “better,” and this is an interesting topic for future research.25

We sketch here that for the estimator
∫
EǵT (ǵ(x))π(x), the essentially same upper bound as Proposition 2.1 holds, under26

an additional condition that Eǵ(T ′(|g(x)|+|ǵ(x)|))2 < C holds for all x ∈ Ω and n ∈ N for someC > 0 (which can be27

shown to be satisfied for transformations T mentioned in our paper). By Taylor’s theorem, there exists αx,Xn,ǵ ∈ [0, 1]28

such that for yx,Xn,ǵ := g(x) + αx,Xn,ǵ(ǵ(x) − g(x)) we have T (ǵ(x)) = T (g(x)) + T ′(yx,Xn,ǵ)(ǵ(x) − g(x)).29

Therefore (Eǵ[T (ǵ(x))]−T (g(x)))2 = (Eǵ[T ′(yx,Xn,ǵ)(ǵ(x)−g(x))])2 ≤ Eǵ[(T ′(yx,Xn,ǵ))2]Eǵ[(ǵ(x)−g(x))2] ≤30

CEǵ[(ǵ(x)− g(x))2], where the last inequality follows from |yx,Xn,ǵ| ≤ |g(x)|+ |ǵ(x)| and the above assumption.31

Moreover, Eǵ[(ǵ(x)−g(x))2] ≤ 2Eǵ[(ǵ(x)−mg,Xn
(x))2]+2(mg,Xn

(x)−g(x))2 ≤ 2kXn
(x, x)+2‖g̃‖2Hk

kXn
(x, x),32

where the last inequality follows from Eq. (10). Thus, |T (g(x)) − Eǵ[T (ǵ(x))]| ≤
√

2C(1 + ‖g̃‖2Hk
)
√
kXn

(x, x).33

Following the argument in line 436, the essentially same bound as Prop. 2.1 can be obtained (with a different constant).34

The generic form of acquisition functions (Eq. 4). We defined Eq. (4) so that the class of acquisition functions to35

which our convergence guarantees are applicable becomes as large as possible. One positive side of this generality36

is that it enables practitioners to design a new acquisition that results in a consistent algorithm; its derivation can be37

quite different from those of the existing acquisition functions (which are often done by approximating an intractable38

posterior covariance function of the transformed integrand). In this sense, we think that every special case of (4) does39

not have to have an interpretation as an approximate posterior covariance. We nevertheless agree that Eq. 4 is rather40

abstract. We will include a discussion about the roles of the components in Eq. (4).41

Responses to Reviewer 3 Thanks again for encouraging comments and insightful suggestions.42

BQ v.s. MC. We will make the tone of the comparison more neutral, including a discussion of the dependence of the43

dimensionality. We hope that you agree, however, that the existence of a convergence guarantee for MCMC (which44

didn’t exist for adaptive BQ so far) is a key contributor to MCMC’s popularity.45

Ergodicity / detailed balance and the relation to weak adaptivity. We will modify the presentation so that the46

intuitive discussion on the connection to the detailed balance and ergodicity becomes minimal. We will also add an47

intuitive explanation about the weak adaptivity condition immediately after it is introduced.48

Proof map / Appendix. We will provide a diagram in Appendix that describes the relationships between the various49

auxiliary results and how they yield the main results. We will also add a high level overview of the proof plan and50

techniques used.51


