
To Reviewer #11

Novelty of our approach, compared with the previous approach (i.e. Liu 2017). Our approach is NOT ‘an2

application of the previous model (Liu 2017)’. Our proposed approach (i.e. DyEnsemble) consists of three main3

parts: state-space modeling, model candidate construction (a part of model-solving), and dynamic ensemble (a part of4

model-solving). 1) For the state-space modeling, we proposed a NOVEL dynamic observation formula (eq (3)), which5

described the nonstationary changes in neural signals. Liu’s approach only work with multiple noise models, and could6

not describe changes of observation functions, thus it is unusable for nonstationary neural decoding. 2) For the model7

candidate construction, we proposed two new operations, namely Neuron dropout and Weight perturbation, to construct8

proper model candidates from neural signals. This stage is very critical for the effectiveness of our approach. 3) For9

dynamic ensemble, we mainly employed the framework of Liu’s robust particle filter approach.10

Effectiveness of Neuron dropout and Weight perturbation. Indeed, we had evaluated the two new operations, and11

did not put in the paper for space limit. Part of them is shown in the table below. The results demonstrated that both12

dropout and perturbation significantly improve the correlation coefficient (CC) .The table includes the particle filter13

(PF) baseline (without neuron dropout and perturbation), the PF with perturbation (p=0.1) alone, and the PF with both14

perturbation (p=0.1) and dropout (drop 5 neurons). Compared with the PF baseline, weight perturbation improves15

the performance by about 10% in noisy situations. Neuron dropout operation leads to a further 20% performance16

improvement with 4 noisy neurons. Thanks.17

Table 1: Evaluation of dropout and perturbation in terms of correlation coefficient (CC)

Method Rat 1 Rat 2
Original Noisy (#2) Noisy (#4) Original Noisy (#2) Noisy (#4)

PF Baseline 0.776±0.002 0.684±0.014 0.558±0.009 0.798±0.002 0.579±0.066 0.377±0.155
PF+Perturbation(0.1) 0.780±0.008 0.711±0.004 0.557±0.035 0.780±0.006 0.665±0.024 0.472±0.080

PF+Perturbation(0.1)+Dropout(5) 0.775±0.015 0.739±0.021 0.671±0.039 0.803±0.009 0.584±0.035 0.596±0.035

Response to the questions. (1) Under what instances is low α useful? - Low α can be useful when the adjacent time18

windows are not strongly correlated, e.g. with small time windows. (2) What is wi
k−1 and how is it computed? - wi

k−119

is the weight of the i-th particle at time k− 1. We initialize wi
0 at time 0, and update it iteratively as described in Section20

2.3. (3) What is the function form of the observation function, and how are the models trained. - The observation21

function takes form of y = Ax, and A is estimated by the least square algorithm. (4) For the other suggestions/issues,22

we will revise the paper accordingly. Many thanks for your valuable comments.23

To Reviewer #224

Description to techniques dealing with the same problem. Most existing neural decoders dealing with nonstationary25

problem can be classified into two groups. The first group is recalibration-based, which uses a static model, and26

periodically recalibrates it (with offline paradigms) or adaptively updates the parameters online (usually require true27

intention/trajectory). Most approaches belong to this group (Gilja and Henderson 2015) (Shanechi and Carmena 2016).28

The second group uses dynamic models to track nonstationary changes in signals (Eden and Donoghue 2004) (Wang29

and Principe 2016). The dynamic model-based approaches can avoid the expense of recalibration, which are potentially30

more suitable for long-term decoding tasks. However, there is very few study in this group for the challenge to model31

nonstationary neural signals.32

Comparison with state-of-the-art. The proposed DyEnsemble approach belongs to the second group. Given strict time33

limit, we implemented dual decoder (Wang and Principe, 2016) with a Kalman filter, which tracks the gradual changes34

of individual neurons. The comparison with dual decoder is shown in the table below. Our approach demonstrates the35

superiority especially with noisy situations.36

Table 2: Performance comparison in terms of correlation coefficient (CC)

Method Rat 1 Rat 2
Original Noisy (#2) Noisy (#4) Original Noisy (#2) Noisy (#4)

Dual decoder 0.779±0.000 0.694±0.010 0.575±0.013 0.803±0.000 0.585±0.025 0.387±0.030
DyEnsemble(18) 0.799±0.012 0.735±0.006 0.583±0.090 0.788±0.009 0.633±0.064 0.516±0.092

To Reviewer #337

About analysis of noises. We injected noise into real data because it could provide an intuitive ground truth to38

investigate the dynamic ensemble process of candidate models. Indeed, analysis of real-world noises in neural signals39

would demonstrate stronger results. We are collecting some long-term neural signals to analyze real-world noises. For40

the baseline approach you mentioned, we will add discussions to compare with it. Thanks for the thoughtful review and41

constructive suggestions.42


