We thank reviewers for the constructive comments. We will include more intuition about the approach, improve the presentation and fix all minor issues in the final version.

Re: Worst-case distribution. Minimizing the loss of the worst-case distribution \(\mathcal{Q} \) implies an optimization over all distributions within the ball of an appropriate radius \(\epsilon \) (see Eq. (1)), which could also include the unknown real distribution \(\mathbb{P}_N \). Though the worst-case \(\mathcal{Q} \) may not be exactly the real \(\mathbb{P}_N \), the classifier (i.e. \(\theta \)) must have fitted \(\mathbb{P}_N \) better than (or equivalently with) \(\mathcal{Q} \), as the classification error over \(\mathcal{Q} \) is the worst. In iterations, the worst-case \(\mathcal{Q} \) will be dynamically determined by the classifier, and the classifier will fit the real \(\mathbb{P}_N \) increasingly better in an implicit way.

To #R1. Re: Reasons of working better. First, generators in existing methods tend to fit the empirical distribution. Given a bad training set, their generated data could be worse. Second, these generators often produce “easy” samples by cooperating with the classifier, and a nearly duplicate copy of the given bad training data could be sufficient but will be useless to estimate the real data distribution. In contrast, our generator plays against the classifier and the capability of the classifier can be largely enhanced over a distribution ball.

Re: G in Eqs. (10) and (14). RHS of Eqs. (10) and (14) indeed depends on G. The last two terms are expectations over the distribution \(\mathcal{Q} \), which is approximated by \(G(z) \), as explained in line 93 of the paper.

Re: inf_{\lambda>0} in Eqs. (4)-(5). In Eq. (4), inf_{\lambda>0} is over both two terms of RHS. A pair of braces will be used to avoid misleading. \(\lambda \) in Eq. (5) indicates the corresponding optimal for inf_{\lambda>0}, and it will change with the bound \(\epsilon \) in Eq. (3).

Since \(\epsilon \) is unknown, it is common to take \(\lambda \) as a hyper parameter to be tuned in experiments (e.g. Theorem 1 in [1]).

Re: Good data. This comment is insightful. Though training data are clean, there still probably exists a subtle gap between distributions of training and test data. Moreover, the generator could conduct “data augmentation” for the classifier. We may thus receive a slightly better result, e.g. 99.42 v.s. 99.35 on MNIST under imbalance= 1.

To #R3. Re: Large \(\epsilon \). A large \(\epsilon \) leads to a set \(\mathbb{B}_\epsilon \) of huge capacity (see Eq. (2)), which could be flooded with distributions that are far away from both the empirical distribution \(\hat{\mathbb{P}}_N \) and the real data distribution \(\mathbb{P}_N \). It is therefore reasonable to set \(\epsilon \) within an appropriate range, as what we usually do with hyper-parameters in machine learning.

Re: Difference from adversarial data augmentation. Firstly, adversarial data augmentation usually aims to create adversarial copies of training data by adding perturbations. In contrast, we generate new sample from a distribution. Secondly, the amount of perturbation (pixels for image) is often constrained in classical methods, while we focus on a distribution ball with a radius bound. In addition, Triple GAN and Triangle GAN tend to generates samples that can well fit the classifier (i.e. cooperation between G and C), but we improve the classifier by challenging it with the generator.

Re: Eq. (8) and \(\mathcal{Q}_i \). We more clearly express the second line of Eq. (8) as \(\sup_{\mathcal{Q}_i} \frac{1}{N} \sum_{i=1}^{N} f(x_i, y_i) - \frac{1}{N} \sum_{i=1}^{N} [f(x_i, y_i) - \int X f(x, y) \mathcal{Q}_i (d(x, y))] \). \(\mathcal{Q}_i \) is the conditional distribution of \((x_i, y_i) \) given \((x_i, y_i) \).

The joint distribution \(\Pi \) of \((x_i, y_i) \) and \((x, y) \) with marginals \(\hat{\mathbb{P}}_N \) and \(\mathcal{Q} \) respectively (see Eq. (3)), can be written as \(\Pi = \frac{1}{N} \sum_{i=1}^{N} \delta(x_i, y_i) \otimes \mathcal{Q}_i \). According to the law of total probability, we can factorize \(\mathcal{Q} \) as the first line of Eq. (8).

Re: True distribution. Sentences around Line 267 will be rephrased. Minimizing the worst-case expected loss implies an optimization over all distributions in the \(\epsilon \)-ball where the real data distribution is also expected to be included.

Re: Comparison with data augmentation. The results shown in the first line of Table[1] are obtained by a combination of randomly clip, horizon flip, and rotation. The second line is results of Mixup [2]. Table[1] shows that our method outperforms both two comparison methods. Mixup also provides reasonable improvement but is not as outstanding as it on regular datasets. Other GAN-based data augmentation methods have been included in Tables 1 and 2 of the paper.

To #R4. Thanks for your support. Source codes will be released.

To #R5. Re: Explanation of improvement. The algorithm receives performance improvement, as the classifier can be implicitly optimized over the real data distribution with the help of the worst-case distribution. Our generator plays against with the classifier within a Wasserstein ball, so that the capability of the classifier can be enhanced during the iterations.

Re: Eq. (9). Thanks for your advice. We will improve Eq. (9) to make it clearer.

Re: JSD and WD. By replacing the critical network D in WGAN with a discriminator, we can easily obtain Eq. (14). With the help of Theorems 4 and 5, the standard GAN framework can be view as a JSD version of framework defined in Eq. (10). The difference between them is the distance metric used in Eq. (2).