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Decoding agreement with Viterbi

log-probability tag accuracy (%)
Viterbi -117.29 +/- .53 97.4 +/- .02

PS (L=1) -117.40 +/- .54 97.0 +/- .01
PS-3 (L=1) -117.40 +/- .54 97.0 +/- .02

PS (L=2) -117.34 +/- .54 97.2 +/- .01
PS-3 (L=2) -117.34 +/- .54 97.2 +/- .01

PS (L=3) -117.33 +/- .54 97.3 +/- .02
PS-3 (L=3) -117.33 +/- .54 97.3 +/- .02

Table 1: Part-of-speech tagging on Brown data
(PS-3 , PS approximated with beams (size 3))

We are grateful to the reviewers for their feedback. We address all their comments below.1

Reviewer #1: Thank you very much for a thoughtful review, for acknowledging our theoretical and algorithmic2

contributions, and for emphasizing the practical significance of our work. We will fix the typo on line 142.3

Reviewer #2: Thank you very much for your feedback. We provide additional results to address all your concerns.4

(1) Results with Peek Reset (PR) and Randomized Peek Search (RPS). Please see the figure above for performance5

of these algorithms. Since PR, by design, makes sense for L large enough (exceeding 5), so we show its results for6

L ≥ 5. Clearly, both the methods perform much better than OSA. We observe that Peek Search (PS) performs better7

than PR and RPS for L < 20. PR performed very well for larger L (not shown in figure) as expected. In particular,8

the scaled log-probabilities under PR for L = 50 and L = 100 were observed, respectively, to be -39.69 and -39.56.9

Moreover, the decoded sequences agreed with Viterbi on 97.32% and 98.68% of the sites respectively.10

(2) Results with Beam Search of size k (BS-k). Please note that despite efficient greedy path expansion, BS-k has11

high latency (i.e., 73384 on genome sequence) since label is not known for any observation until the k-greedy paths are12

computed for entire sequence and backpointers are traced back to the start. We found that BS-2 performed worse than13

PS for L ≥ 5. Also, BS-3 recorded log prob.-39.61 and decoding agreement 97.73% (worse than PR with L = 100).14

Based on your comment about BS-k, we also explored approximating discounted paths in PS by few beams, thereby15

combining strengths of both PS and BS-k. This algorithm performed well on standard Brown data (Table 1).16

(3) Results with Peek Search when γ = 1. PS with γ = 1 obtained a scaled log-probability of -45.86 (and 58.8%17

decoding match with Viterbi), however the performance was similar to PS for larger L. This is expected since γ18

approaches 1 as L increases. Please note that PS is the only algorithm with γ < 1, and both RPS and PR do not perform19

any discounting (i.e. γ = 1). Based on your review, we will expand on the role of γ for PS and include these results.20

(4) Results on short sequences. We found PS to work exceptionally well on short Markov chains as well (both in21

terms of log probability and test accuracy). In particular, on the Brown data (average sentence length only 20.25), we22

achieved near-optimal performance under very low latency (Table 1).23

(5) Pseudocode. Please see Appendix E for pseudocode of PS. We will add pseudocode for RPS and PR as well.24

Reviewer #3: Thank you very much for providing a nice summary of our contributions, and for your suggestions.25

(1) Summing the geometric series, and setting γ in the Proof of Theorem 1. We note that (1− γ)
∑L

j=∆+n−1 γ
j26

=

L∑
j=∆+n−1

(γj − γj+1) = (γ∆+n−1 − γ∆+n) + (γ∆+n − γ∆+n+1) + . . .+ (γL−1 − γL) + (γL − γL+1)

= γ∆+n−1 −
(

(���γ∆+n −���γ∆+n) + . . .+ (��γ
L −��γ

L)
)
− γL+1 = γ∆+n−1 − γL+1 , h(γ)

We immediately obtain the optimal γ by setting the derivative, i.e. h′(γ) = (∆ + n− 1)γ∆+n−2 − (L+ 1)γL , to 0.27

(2) Adversarial rewards. Our algorithms accommodate adversarial settings, since our proofs do not require any28

distributional assumptions on the rewards for any (L+ 1)-long peek window: they may be chosen in an arbitrary (e.g.29

non-stochastic, possibly adversarial) manner, including when adapting to time (Appendix D).30

(3) Performance of Peek Reset and Randomized Peek Search. Please see the figure for these results.31

(4) More experiments (another dataset). We also include results of our experiments on the standard Brown data (task32

is to tag sentences with their parts-of-speech). Since explicit train-test sets are not provided, we formed 5 random33

partitions each having 80% train and 20% test sentences. We trained a separate HMM model for each partition. We34

report the average test accuracy and standard deviation results (Table 1). Even with very small L, Peek Search nearly35

matched the performance of Viterbi. Moreover, similar results were obtained when we used 3 beams to greedily expand36

discounted paths in each (L+1)-long peek window. Thus, we can combine strengths of Beam Search with Peek Search.37


