
Reviewer # 6, the motivation is coming from the many significant applications of multi-armed bandit (MAB) models,1

e.g. clinical trials, ad placement, adaptive routing etc. For instance in a clinical trials setting it is natural to try to model2

the assertion: ‘if a particular drug was successful the n-th time it’s used, then it is very likely that it will be successful3

again the n+ 1-th time it’s used’. This assertion requires precisely the notion of Markovian dependence, and it can not4

be captured using the i.i.d. model. Through our work we increase the expressive power of MAB models and make5

it possible to express assertions like the aforementioned. Our work is technical and follows the typical approach of6

mathematical research where one generalizes results in broader mathematical situations. Also in the survey [BCB12]7

one can find references to works where the objective is regret minimization rather than best arm identification, involving8

rested and restless Markovian MAB models which have hundreds of citations. Moreover we disagree with the statement9

that the exponential family of stochastic matrices seems artificial. This is because many well established works in i.i.d.10

MAB, such as [GK16], as well as the work of Cappé et al on KL-UCB strategies, build on the notion of an exponential11

family of probability distributions. An exponential family of stochastic matrices is a generalization of an exponential12

family of finitely supported probability distributions, and so we essentially assume the same type of structure as many13

other major works that deal with the i.i.d. case.14

Reviewer # 6, we strongly believe that the value of this work is coming precisely from its technical depth and the new15

tools introduced. The reason that Markovian bandits are much less studied compared to i.i.d. bandits is that the tools16

that probability theory has to offer in the case of Markovian dependence are so much less developed compared to the17

i.i.d. tools. We’re the first to take the notion of an exponential family of stochastic matrices, initially introduced in the18

context of large deviations for Markov chains, and import it in the learning theory community. Moreover, in order to19

use it as the foundation of our Markovian MAB model we develop many technical properties of the family. One of20

the most important contributions of this work is the Chernoff type bound for Markov chains, we discuss it further in21

the next paragraph but here we note that reviewer # 6 incorrectly states that this is an asymptotic concentration result,22

while our result is non asymptotic. For the Markovian MAB lower bound our contribution is two fold. We first add the23

technical pieces needed in order to extend the standard change of measure argument to the Markovian setting, i.e. the24

regeneration argument for Markov chains. Moreover, we simplify the argument of [GK16] where they invoke some25

‘transportation Lemma’, by observing that this so called ‘transportation Lemma’ is nothing more than a special case of26

the well known data processing inequality from information theory. The upper bound analysis indeed follows [GK16]27

quite closely, but even at this part we are able to fix a broken argument from [GK16]. In particular after contacting the28

second author of [GK16] we have verified that the last part of the proof of their Proposition 12 is wrong, and their C29

has to depend on δ rendering their whole result shaky.30

Reviewer # 3, for the Markovian bandit problem we take S ⊂ R and in L.177 we take φ(x) = x, so the rewards that we31

observe are the states. Moreover the learning algorithm does not need to know the whole generator P , but only some32

scalar quantity related to it. For instance when P is positive maxx,y,z
P (x,z)
P (y,z) is all we need, while when the arms are33

i.i.d. we do not need to know something. In any case the generator P is being tilted exponentially by θ1, . . . , θK in34

order to produce the K Markovian arms, and the algorithm is agnostic of all the tilts and of all the stationary means.35

Reviewer # 4, analyticity of the PF eigenvalue, left and right eigenvectors is guaranteed because the eigenvalue is simple36

and we impose the two normalization constraints on the eigenvectors so that they are unique and the ‘only determined37

up to a scalar factor’ issue that [Lax07] mentions doesn’t occur. Reviewer # 4, thank you for your detailed comments!38

Regarding our Chernoff bound for Markov chains, roughly speaking large deviations dictate that the true rate of39

exponential decay is given by a relative entropy representing an information projection. This relative entropy already40

implicitly conveys information about the eigengap of P , the mixing time of the chain, it is φ specific etc. Any other41

bound that has a different rate of exponential decay is suboptimal and leads to a Pinsker type inequality like the one in42

L.171-172 (reviewer # 3, this inequality holds under the assumptions of Theorem 3.3 from [Lez98]). Therefore our43

bound has the optimal exponent, and the only way of potentially improving it is by introducing a better constant in the44

prefactor or by generalizing it. Reviewer # 4, L.163-164 are meant to say that when our assumptions are active and45

the assumptions of some other work are active, then our bound is better. For instance, we can consider the important46

case of a strictly positive P (no matter φ). Then Theorem 3.3 from [Lez98] and our Theorem 1 are both in action, with47

ours dominating. Reviewer # 4, your observation is correct, in Theorem 1 we should have first fixed φ and then fix P ,48

but this does not alter the optimality statement that we made above. To the best of our knowledge (following citations49

and consulting local experts) this constitutes a novel and optimal non asymptotic concentration result for Markov50

chains. Bounds of this type are of fundamental importance, not only in learning theory, e.g. MCMC, Markov decision51

processes etc, but also in general in the world of applied probability. For instance the work of [Gil93], which presents52

a suboptimal bound for reversible Markov chains accompanied with computer science applications, is coming from53

FOCS, (best TCS conference), and bounds inspired by the work of [Gil93] based on matrix perturbation theory without54

accompanying applications [Din95, Lez98, LP04], are coming from the Annals of Applied Probability (one of the best55

probability theory journals). In this work we’re not only developing an optimal Chernoff bound for Markov chains56

using new techniques, but we also apply this in order to resolve the complexity of the best Markovian arm problem.57


