
We would like to thank all the four reviewers for their comments. In this document, we try to briefly respond to the1

concerns and questions raised by Reviewers 2 and 4.2

Reviewer 2: –(major comments) We have tried to avoid making any claims about “explaining the help from unlabeled3

data". Theorem 3 only provides a generalization bound. We revise the paper again to remove any remaining claims4

about this issue. However, using our framework, one can (at least theoretically) characterize cases where unlabeled5

data can provably help. First, it should be noted that by using only the labeled data for learning (as suggested by the6

reviewer), the residual generalization error in the classical learning framework would be O
(
n−1/2η−1/2

)
. But residual7

error terms of Theorem 3 are both O
(
n−1/2

)
(note that

√
η +
√

1− η ≤
√

2). Therefore, we can guarantee a much8

smaller residual error when supervision ratio is very small, i.e. η � 1. Second, for a highly compatible pair of model9

set Φ and data distribution P0, the condition MSRΦ,P0
(λ, ζ) < η can be satisfied even for very small (and generally10

negative) values of λ. For a sufficiently small λ, our R̂SSAR becomes smaller than the average risk computed over only11

the labeled data. Let us discuss this matter, mathematically: For simplicity, assume the asymptotic case of n→ +∞12

(similar arguments hold for n < +∞). Then, with a little abuse of notation and for any φ ∈ Φ, we have:13

lim
n→+∞

R̂SSAR (φ;D)
a.s.
= EX∼P0X

{
ηEy∼P0|X

{φ (X, y)}+ (1− η)
(λ)

softmin
y∈Y

{φ (X, y)}

}
∗
≤ EX,y∼P0

{φ (X, y)} ,

where ∗ holds for sufficiently small values of λ, since Ey∼P0|X
is an expectation operator but softmin(λ) can go as far14

as being the min operator. Therefore, one can establish a set of theoretical conditions under which unlabeled data is15

guaranteed to be helpful, since all the three terms in the r.h.s. of the bound in Theorem 3 become smaller than their16

traditional counterparts. The above-mentioned conditions are very general, but at the same time very implicit. In any17

case, we will add a lemma to our appendix to highlight this issue for interested readers.18

–(minor comments) 1. Yes, our SSM measure can also be used when ε = 0 (i.e. no distributional robustness). To the19

best of our knowledge, there are no similar theoretical treatments of this problem in the existing works. 2. Please refer20

to our response to Reviewer 4.21

Reviewer 4:–(major comments) Considering reviewer’s comments, first let us emphasize on some of our contributions22

that might have been missed during the review: we have tested our method on three different datasets and outperformed23

state-of-the-art in at least one of them. Also, we theoretically showed that a model set with a bounded VC-dimension is24

also adversarially-learnable (Lemma E.3), even in a semi-supervised scenario, where a corresponding generalization25

bound is given in Theorem 3. We agree with both Reviewers 2 and 4 that MSR in (C.11) is very implicit and hard26

to evaluate. However, please note that our framework is completely general, and thus providing a way to evaluate27

MSR in a general scenario might lead to solving several open problems in statistics (similar to providing a general28

way to evaluate VC-dimension or Rademacher complexity for any model set). For example, consider the loss function29

set Φ = {− logPθ (·, ·) | θ ∈ Θ}, where Pθ can be any parametric distribution family over X × Y . Also, assume30

dataset is sampled from Pθ0 , where θ0 ∈ Θ. Then, it can be easily seen that the proposed risk in Theorem 1 when31

λ = −1, is in fact the ML estimator (which is also the optimal estimator). Characterizing MSR in this case can shed32

light on the sample complexity of ML in a general semi-supervised setting which is still an open problem. However,33

let us give a quick example of how fast MSR can be computed in some very specific and simple cases: Assume the34

cluster assumption, where data distribution P0 is a mixture of two distributions whose supports do not overlap over35

X , and correspond to only y = −1 and +1 over Y , respectively. Consider the loss function set Φ which is associated36

with a family of arbitrary binary classifiers, where for each φ ∈ Φ we have φ (X, y) =∞ · φacc (X, y) + φmar (X).37

Here, φacc ∈ {0, 1} checks whether the label y matches with the positioning of X w.r.t. the classifier of φ, and38

φmar (X) ∈ R penalizes the margin, i.e. distance of X from the classifier’s border. Now, let ψ ⊆ Φ correspond to a39

subset of classifiers that classify all the data correctly (EP0
φacc = 0), but have different expected margins. Also, assume40

φ∗ (the minimum loss associated with the optimal classifier) is also inside ψ. Then, some simple calculations reveal that41

for every φ ∈ ψ and any λ we have ρλ (φ) = 0 (C.6) and thus Λ (ψ) = −∞ (C.10). Also, we have Γ (ψ;λ) ≥ 0 (C.9),42

again for any λ, while GAP (ψ) (C.9) is strictly positive for any non-trivial Φ (recall that φ∗ ∈ ψ). Considering the fact43

that we can have ζ = O
(
n−1/2

)
according to Theorem 3, then for a sufficiently large n, MSRΦ,P0

(
λ,O

(
n−1/2

))
44

becomes zero for any λ ∈ R ∪ ±∞. This result is in full agreement with the previous bounds that are specifically45

derived for generic learnability of statistical models when non-overlapping cluster assumption holds (For absolute46

learnability, at least one data point with a label is needed to decide which cluster is which).47

–(minor comments) 1. We have rephrased the sentences to avoid any possible confusions. 2. Yes, n = nl + nul.48

Reviewer is correct and notations w.r.t. D will be corrected. 5. The model used in our experiments is a deep neural49

network whose structure is completely explained in the supplementary document. Unfortunately, we cannot give more50

info in the main text due to the page limit. 3.4.6. We will correct all the grammatical mistakes, and also update the51

references.52


