
We appreciate the reviewers for the time and expertise they have invested in writing these constructive comments.1

Reviewer #12

Q: The lack of error bars. How does the method react to random initializations? Why aren’t uncertainty shown?3

A: Thank you for your constructive suggestion, according to which we draw the error bars (mean ± std) to show how4

the method reacts to random initializations. Please see Panel (a) of Figure I for an example. We will use error bars to5

present our experimental results in the camera-ready version.6

Q: To increase my score even higher I need to be convinced that the theoretical result is a very substantial advance.7

A: Thanks. The significance of our theoretical contribution is to find a simple strategy to identify a single iterate from8

the iterate sequence with optimal convergence rates. While the existence of such an iterate is guaranteed by the fact that9

time-averaging gets optimal convergence, searching for such an iterate is non-trivial. Our method also has a potential to10

be applicable to other stochastic algorithms, e.g., stochastic dual averaging.11

Reviewer #212

Q: Algorithm 1 (Alg. 1): when I understand correctly, one has to calculate all iterates up to t = 2T − 1 and needs to13

store all iterates from t = T up to t = 2T − 1.14

A: Thanks for the careful observation. Our description of Alg. 1 leaves an impression that it needs to store all iterates15

from t = T up to t = 2T − 1 since we set T ∗ in line 17 of Alg. 1. However, this storage is indeed not required if we set16

wT∗ ← wt in line 17 of Alg. 1 (we only need wT∗ in practical implementation). We will address this in the revision.17

Q: Is the map t 7→ At monotone under (strong) convexity assumption? this refers to the choice of T ∗ in Algorithm 118

A: Thanks for the query. Motivated by your comment, we run an experiment on SVM problems with a strongly convex19

objective to check the monotonicity of At. In Panel (b) of Figure I, we plot At as a function of t, from which we see20

that At is not a monotone function of t. We will mention it in the camera-ready version.21

Q: Wouldn’t any t ≥ T ∗ also do the job? . . . the best choice would possibly be the argmin of all t satisfying the22

condition in l.16 (which is possibly the last iterate)23

A: Thanks for the query. We conjecture that not all t ≥ T ∗ can achieve optimal convergence. The underlying reason is24

that t ≥ T ∗ may not necessarily satisfy the condition in line 16 of Alg. 1, which is required to get optimal convergence25

in our analysis.26

Among all t satisfying the condition in line 16 of Alg. 1, the minimal t (MIN-T) has an appealing property of requiring27

the minimal computational cost, whose performance may be further improved if we update the model once encountering28

an wt′ satisfying the condition in line 16 of Alg. 1 with t′ > t. The intuition is that the added computational cost may29

generally come along with a better model. This is the strategy adopted by SCMDI/OCMDI. Another strategy is to set30

T ∗ as the index whose associated4 is minimal (MIN-A). The intuition is that the quality of wt depends on4 (please31

see line 243 of the paper). We run an experiment to show how OCMDI behaves versus MIN-T and MIN-A, and report32

results in Panel (c) of Figure I. We will add a comment in the camera-ready version.33

Q: Benefit compared to just taking averaging seems clear; I do not see the benefit compared to taking the last iterate34

A: Thank you for the comment. The benefit compared to taking the last iterate mainly consists in the theoretical property.35

Taking the last iterate can only achieve a suboptimal convergence rate with high probabilities (up to a log T factor),36

while our strategy can achieve the optimal convergence rate.37

Reviewer #3: Thank you for your very positive comments.

(a) Error Bar Presentation (b) Monotonicity (c) Comparison on Selecting Iterates
Figure I: Experimental results of SPGD applied to SVM problems with the data Splice.


