
First, we would like to thank all reviewers for their very positive comments on the theory presented in the paper. This is1

a theoretical paper indeed, introducing a new concept, mathematically principled and studied. In order to be applicable2

in practice, we show how to compute it and how to quickly approximate it, with code available (on the anonymous3

github link provided in the paper). We also check experimentally that our estimator behaves correctly. We believe this4

is already a nice set of contributions.5

In addition, we also propose a certain number of possible uses and extensions of this concept, showing it could be6

useful in many different ways. We consider it is out of the scope of this paper to actually run such applications, which7

would be difficult to include in the paper anyway for space reasons without sacrificing ideas in the theoretical section.8

However, we do understand the main criticisms about: (a) the lack of insights brought by the large-scale experiment on9

remote sensing image registration in Section 6, and (b) the lack of comparison to the perceptual loss. For (b), we propose10

to add such a comparison on nearest neighbor retrieval in Section 6. We notice that the perceptual loss sometimes11

performs reasonably well, but often not. For instance, we show below the closest neighbors to a structured residential area12

image, for the perceptual loss (first row: does not make sense) and for our similarity measure (second row: similar areas).13

14

15

To tackle (a), we propose to show how the similarity experimental computations in Section 6 can be used to solve the16

initial problem, by explicitly turning similarity statistics into a quantification of the self-denoising effect, as follows.17

Let us denote by yi the true (unknown) label for input xi, by ỹi the noisy label given in the dataset, and by ŷi = fθ(xi)18

the label predicted by the network. We will denote the (unknown) noise by εi = ỹi − yi and assume it is centered and19

i.i.d., with finite variance σε. The training criterion is E(θ) =
∑
j ||ŷj − ỹj ||2. At convergence, the training leads to20

a local optimum of the energy landscape: ∇θE = 0, that is,
∑
j(ŷj − ỹj)∇θŷj = 0. Let’s choose any sample i and21

multiply by∇θŷi : using kIθ(xi,xj) = ∇θŷi.∇θŷj , we get:
∑
j(ŷj − ỹj) kIθ(xj ,xi) = 0.22

Let us denote by kINθ (xj ,xi) = kIθ(xj ,xi)
(∑

j k
I
θ(xj ,xi)

)−1
the normalized kernel, and by Ek[a] =23 ∑

j aj k
IN
θ (xj ,xi) the mean of value a in the neighborhood of i, that is, the weighted average of the aj with24

weights kIθ(xj ,xi) normalized to sum up to 1. This is actually a Parzen window estimator. Then the previous property25

can be rewritten as Ek[ŷ] = Ek[ỹ] . As Ek[ỹ] = Ek[y] + Ek[ε] , this yields: ŷi − Ek[y] = Ek[ε] + (ŷi − Ek[ŷ])26

i.e. the difference between the predicted ŷi and the average of the true labels in the neighborhood of i is equal to the27

average of the noise in the neighborhood of i, up to the deviation of the prediction ŷi from the average prediction in its28

neighborhood. We want to bound the error ‖ŷi − Ek[y]‖ without knowing neither the true labels y nor the noise ε.29

One can show that Ek[ε] ∝ varε(Ek[ε])1/2 = σε ‖kINθ ‖L2. The denoising factor is thus ‖kINθ ‖L2, which is between30

1/
√
N and 1, depending on the neighborhood quality. It is 1/

√
N when all N data points are identical, i.e. all satisfying31

kCθ (xi,xj) = 1. On the other extreme, this factor is 1 when all points are independent: kIθ(xi,xj) = 0 ∀i 6= j. This32

way we extend noise2noise[11] to real datasets with non-identical inputs. In our remote sensing experiment, we33

estimate this way a denoising factor of 0.02, consistent across all training rounds and inputs (±10%), implying that34

each training round contributed equally to denoising the labels. This is confirmed by Fig. 2, which shows the error35

steadily decreasing, on a control test where true labels are known. The shift (ŷi − Ek[ŷ]) on the other hand can be36

directly estimated given the network prediction. In our case, it is 4.4px on average, which is close to the observed37

median error for the last round in Fig. 2. It is largely input-dependent, with variance 3.2px, which is reflected by the38

spread distribution of errors in Fig. 2. This input-dependent shift thus provides a hint about prediction reliability.39

It is also possible to bound (ŷi − Ek[ŷ]) = Ek[ŷi − ŷ] using only similarity information (without predictions ŷ).40

Theorem 1 implies that the application: ∇θfθ(x)
‖∇θfθ(x)‖ 7→ fθ(x) is well-defined, and it can actually be shown to be differ-41

entiable and Lipschitz with a network-dependent constant. Thus ‖fθ(x)− fθ(x′)‖ 6 C
∥∥∥ ∇θfθ(x)
‖∇θfθ(x)‖ −

∇θfθ(x
′)

‖∇θfθ(x′)‖

∥∥∥ =42

√
2C
√
1− kCθ (x,x′), yielding ‖ŷi− ŷj‖ 6

√
2C
√

1− kCθ (xi,xj) and thus Ek[ŷi− ŷ] 6
√
2C Ek

[√
1− kCθ (xi, ·)

]
.43

Other: thank you for the very relevant literature, and the nice application suggestion to GAN / cycle-consistency. We44

can postpone the paragraph Dynamics of learning to the appendix to make place for the section above if needed.45


