
We thank all of the reviewers for their thoughtful feedback, and will incorporate their suggestions into the next version1

of our paper. We detail our responses to their comments below.2

R1. We thank R1 for their comments and will emphasize the broader implications of our work on model explainability.3

R2. R2 asked to contrast using (i) influence functions to measure the importance of training points with (ii) existing4

techniques for measuring feature importance, namely Datta, Sen, & Zick, 2016; Adler et al., 2016; and Adebayo &5

Kagal, 2016. These papers address a different problem setting from ours and their methods are correspondingly distinct.6

The main difference is that the papers above seek to explain a fixed model θ, whereas we examine how the learned7

model θ̂ changes as a function of its training data. Our central issue is therefore reasoning about retraining the model,8

which is not a concern shared by the papers above. Concretely, those papers consider the question: given a fixed model9

θ, how do its predictions on a test set Dtest depend on the values of some feature xk in Dtest? They investigate this by10

perturbing the value of xk in various ways (e.g., by randomizing xk for each test point x in Dtest). In contrast, we are11

given the training set Dtrain and our goal is determining the effect of removing groups of points in Dtrain on the learned θ̂.12

Despite their differences, these methods could be complementary, as R2 suggested. For instance, if we find (with feature13

importance methods) that a model depends heavily on some feature, we could use influence functions to identify the14

training data most responsible for that dependence. We will include this discussion and we thank R2 for pointing it out.15

R3: Non-convex objectives. R3 asked if our empirical findings hold for non-convex models. Our initial experiments16

are promising and suggest that this can be true; we will discuss this question in our next revision and plan to conduct a17

more extensive study. We are grateful to R3 for highlighting this question. To properly respond, let us first provide18

context on why influence functions and actual effects are classically only defined for convex models.19

Recall that the actual effect I∗f (w) of a subset w measures the difference between (i) the original model θ̂(1), which20

minimizes the loss on the training data Dtrain, and (ii) the new model θ̂(1− w), which minimizes the loss on Dtrain with21

w removed. Thus, for I∗f (w) to be well-defined, there must be a unique model θ̂(1) that globally minimizes the training22

loss on Dtrain, and likewise for θ̂(1 − w). This condition is satisfied when the model is strongly convex. Similarly,23

the influence If (w) is only well-defined when θ̂(1) is unique and the model is strongly convex around it. Finally, to24

measure the actual effect and influence, the models θ̂(1) and θ̂(1− w) must not only be well-defined but computable.25

Non-convex models unfortunately violate all of these requirements: the global minimizer θ̂(1) may not be unique for a26

given Dtrain, and even if it were, we may not find it. For instance, neural networks are typically trained with SGD-based27

methods that only guarantee convergence to a local minimum, so in general we cannot compute θ̂(1) nor θ̂(1− w).28

To address these issues, we propose augmenting the classical definitions as follows. Let the actual effect I∗f (w, θ0, r) of29

a subset w given an initial trained model θ0 and a random seed r to be the change in the model after removing w and30

retraining the model by starting from θ0 and running SGD with randomness r. Specifying the initial model θ0 sidesteps31

the issue of θ̂(1) being non-unique or impossible to compute, while specifying r resolves the issue of the retrained32

model θ̂(1−w) being ill-defined. Similarly, we augment the predicted effect If (w, θ0) to be the influence of w around33

the initial model θ0. Our goal is then to see if If (w, θ0) ≈ I∗f (w, θ0, r) for all r.34
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Figure S1: Predicted vs. ac-
tual effects on an MLP. Colors
are as in our submission.

We tested this with a multi-layer perceptron (MLP) with 2 hidden layers (128 and 3235

nodes) on 10% of the MNIST 10-class dataset, choosing θ0 as a model trained from36

scratch with an arbitrary random seed. As in our submission, we generated 70 coherent37

groups of training points. For each group, we tried 50 values of r but found negligible38

variation between the actual effects (max difference of 3× 10−4 between r’s). Figure39

S1 shows that influence is highly correlated with actual effects (for an arbitrary r) on40

the test point with highest loss (Spearman ρ = 0.96), even in this non-convex setting.41

R3: Case studies. R3 is right to point out the distinction between removing certain42

labeling functions (LFs) and crowdworkers from the training data, which we do in43

our work, and actually changing the LFs or the crowdworker recruiting policy. For44

example, it is possible that explicitly encouraging LF programmers to create LFs with45

higher coverage could result in spurious LFs that lower model performance, even46

though the naturally-obtained high-coverage LFs are the most helpful for the model.47

Determining the actual effect of manipulating data collection will require systematic48

user experiments, and we will clarify and emphasize this distinction. We thank R3 for49

bringing this point up.50


