
We thank all three reviewers for their careful reading and constructive suggestions. We will revise the paper thoroughly,1

incorporating all the comments.2

[reviewer 1] We will provide precise references from the classical literature on the hardness of N -player games,3

including [PR05]. We will add the definition of the `1-Wasserstein distance to make the paper self-contained. In4

addition, we will correct st (of line 67) to st, and rewrite the formula µt(s) as µt(s) =
∑N

j=1,j 6=i 1s(s
j
t)

N , where the5

indicator function 1s(s
j
t ) = 1 if sjt = s and 0 otherwise. Finally, we will add a section to clearly define all notations.6

[reviewer 2] (1) We will revise the presentation carefully, as suggested. (2) Thank you for asking the clarification7

between the stationary versus non-stationary MFGs. Stationary solutions are commonly adopted for MFGs with an8

infinite-time horizon, see [12,15]. Non-stationary solutions are mostly used for MFGs with a finite-time horizon, see9

[Bar12]. Our work shows the existence and the uniqueness theorems for both the stationary (Appendix B) and the10

non-stationary MFGs (Theorem 1). The algorithms in Section 4 are focused on Q-learning algorithms, which are11

primarily designed for stationary MDPs and hence appropriate for stationary MFGs.12

(3) On the contribution: The GMFG framework (Section 3) incorporated both the state distribution and the action13

distribution. With the additional action distribution, Γ2 was different from the one defined in [12] and the proof for the14

uniqueness and the existence of the solution needed further modifications. To clarify the difference with [25]: [25]15

showed the convergence to a local (Nash equilibrium) solution, and the uniqueness of the local solution given the16

presence of a unique global solution. However, [25] did not analyze the existence of a unique global solution. We17

established the existence, the uniqueness, and the convergence to a global solution. We will add this discussion in the18

revision.19

(4) On the related works of MFG: Apologies for missing some references, which we will add with careful discussions20

of their contributions and relationship to our work ([HM17, MJdC18]).21

(5) On the literature related to soft Q-learning: We will include additional references. Thank you for pointing out the22

potential divergence of SARSA using the Boltzmann operator [AL17]. Indeed, it is now more interesting to see the23

guaranteed convergence with Q-learning using the Boltzmann policies. We will add this comparison and discussion in24

the revision. Indeed, we think it is worth testing the performance using the Mellowmax exploration, in addition to the25

Boltzmann exploration.26

(6) On the definition of NE: MFG is a game with an infinite number of identical players. The NE solution is therefore27

the same for each individual by symmetry. If each individual in the population follows the conditional optimal solution28

(from the single player side), the consistency means that no player in the population has the incentive to deviate (from29

the solution of the single player side). This is consistent with the NE definition for N -player games.30

(7) For the Ad auction example, apologies for the confusion. M is only one of several model parameters and indicates31

the competition intensity. The game interaction is more extensive than M alone: for each agent, all of her reward, her32

winning probability and her budget dynamics, depend on the strategies from other opponents.33

[reviewer 3] We will rewrite the repeated auction example in Section 2.3, in order to be consistent with the general34

model setting in Section 2.2. We will also clearly define and explain the quantities in Theorem 2.35

(3) For the stationary setting in Section 4, the corresponding uniqueness and existence theorems for the time-independent36

MFG solution (i.e., Theorem 4) are given in Appendix B (see Line 174) under slightly different conditions from the37

non-stationary setting. Note that due to the introduction of the mean information process in the MFG, an infinite-time38

horizon MFG is generally associated with a parabolic type PDE, hence the Nash equilibrium could still be time39

dependent. This is fundamentally different from the theory of single-agent MDP where the optimal control, if exists40

uniquely, would be time independent in an infinite-time horizon setting.41

(4) For Assumption 1 and inequality (5), we can impose Γ1 to be single-valued by using e.g., argmax-e. Moreover,42

in the linear-quadratic continuous state-action setting, the assumption can be translated into constraints on model43

parameters. We will add this in the revision.44

(5) In practice, a uniform grid for the epsilon-net would suffice, as shown in our experiments. That is to replace the45

projection of L̃k onto the epsilon-net by truncating the resulting L̃k, up to a certain number of digits. For example, 446

was used in the experiment. The choice of c is fairly simple, as the experiments are robust with respect to different47

values of c, ranging from 1 to 100. For instance, we chose c = 5.48

(6) For the iteration complexity in Theorem 2, indeed, one could simplify the order of iteration complexity, by simply49

taking h to be 3/4 and η to be 1. We will clarify this.50

(7) Thank you for the reference [SBR18] for discrete-time MFGs, which will be added accordingly.51
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