
We thank the reviewers for their nice and helpful comments. We are happy that the reviewers see value and potential in1

our main claim that spectral modification can circumvent a fundamental weakness of spectral clustering.2

Our modification algorithm is intended as a proof of concept of what we view as a general framework. It is by design3

very fast, and it always outputs a graph that spectrally dominates the input graph while preserving its cuts. It is indeed4

heuristic in the sense that the output is not provably spectrally close to the maximimizer. However its derivation is not5

ad-hoc; it is based on theoretical intuition that we briefly discuss in page 7. In fact, we believe that a still-practical6

variant of the algorithm should be analyzable.7

There have been several recent works on graph embedding methods. These are quite successful, but appear to lack8

any theoretical justification of their empirical performance gains. These methods effectively compute modified linear9

operators from the input graph via ‘deep walks’ that associate nodes at longer ranges, followed by eigenvector-based10

embeddings (e.g. see [22]). This is very much in the spirit of our work and we believe that our findings can shed11

theoretical light to their success. With this work we want to lay the theoretical groundwork towards that direction,12

which we believe merits a separate treatment, as we explain below.13

Comments on the choice of experiments.14

• Our experimental examples are well known and appreciated in spectral graph theory. They are understood to capture a15

fundamental weakness of spectral partitioning, and for that reason we would not consider them as “somewhat arbitrary”.16

We can report that the unsupervised versions of recent graph embedding methods (e.g. NetMF [22]) fail to compute17

the correct solutions on these examples . Getting the correct output requires a higher dimension in the embedding,18

and a significant amount of supervision, whereas our result uses no supervision; we will add these experiments in the19

supplementary material and arXiv version. So, up to our knowledge, there is no other graph embedding algorithm that20

correctly computes a good solution for these difficult instances.21

• The size of the graphs we use for the visualization had to be small for the visualization to work properly. The same22

experiments have been repeated for much larger versions of the same graphs (with millions of nodes), with the same23

outcome. That is why Figures (2) and (3) refer to an asymptotic improvement (with respect to n) of the value of the24

cut. Notably, this improvement is with respect to a precise optimization problem (i.e. conductance), and the obtained25

solution is optimal. So, with the exception of the image examples, we would not consider these results as “qualitative”.26

Clearly, demonstrating asymptotic improvements cannot be done via empirical evaluations on fixed-size networks.27

• We are aware of the fact that recent graph embedding works provide extensive experimental evaluations. However, in28

the absence of any theoretical justification, extensive evaluation is necessary to demonstrate their value; we believe29

that this is not the case with our work. Importantly, these evaluations are empirical, i.e. against given ‘ground truths’30

and not with respect to well-defined optimization problems as in our case. They pertain to the practical utility of the31

algorithms, which is a markedly distinct topic relative to the more theoretical orientation of our work.32

• We do however believe in the applicability of spectral modification at least for certain classes of problems, and33

we plan to conduct comparisons with other methods. It should be noted though that these recent works have been34

successful mostly in the supervised setting. Our algorithm has a supervised version –implied by Theorem 3.3, where an35

appropriately formulated graph B can encode supervision information. This supervised extension is also a distinct task36

with a host of technical issues that require a separate focus in order to attain the full potential of our approach. In this37

context, we plan to also study if and to what extent other embedding methods are realizations of spectral modification.38

Answer to specific comments by reviewer #2.39

• In Theorem 3.3 we wrote “there exists a graph H ...” in order make the theorem self-contained, without reference to40

the preceding definitions. But H is indeed the spectral maximizer; a clarification will be added. Note that Theorem 3.141

essentially states that the maximizer has the maximum possible eigenvalues for the given cuts, but it does not quantify42

that maximum. With Theorem 3.1 alone, the second eigenvalue can still be lower than the conductance. Theorem 3.343

states that the second eigenvalue is actually within Õ(1) from φ, which produces a tight gap in the Cheeger inequality.44

This is in fact explained in lines 144-147, but we realize that a clearer explanation is needed.45

• The rigorous justification about the diameter of the tree is given in Lemma 3.3, which states that it is O(log n).46

• Minor Points: The quality of the spectral maximizer indeed depends on α and the diameter of the tree. We omit them47

from the definition for the sake of conceptual simplicity and brevity, as we remark in lines 124-125. We will add symbol φ48

in line 25, right after ‘conductance’. Line 131 appears problematic due to the fact that the two paragraphs in lines 127–12949

and 130–134 were unintentionally swapped. This was just meant as a minor technical point that spectral dominance does not50

require H to be connected. We will fix it. In Theorem 3.2 we will add “for all S ⊆ V ”, which specifies what S is. We will51

fix the typo in Definition 3.2. In Definition 3.3 we will add a concrete statement thatH is the maximizer. [ ] will be used for references.52
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