
We thank the reviewers for their insightful comments. Below we prioritize what we view as the most important points.1

Motivation and Contributions2

EM is the quintessential approach for mixture problems. Despite its long history and popularity, theoretical under-3

standing of EM is disappointingly limited and largely lags its empirical application. Even in the simplest setting of 24

Gaussians (2GMM), global convergence was only established recently. We establish such a guarantee for a much more5

general class of distributions. In particular, we identify the crucial role of log-concavity—rather than Gaussianity—in6

ensuring global convergence, while recent related work considers specific distributions (e.g. Laplace or regression with7

Gaussian noise) on a case-by-case basis.8

Compared to prior work, we overcame two main technical challenges: 1) We need to establish the angle shrinkage9

property of the LS-EM algorithm. This is contrastingly different from the working mechanism (shrinkage in distance)10

of classical EM for 2GMM; existing work (e.g. Balakrishnan, and Daskalakis) heavily relies on this mechanism, which11

does not work for general log-concave mixtures. 2) Unlike Gaussian, for general log-concave distributions in the high12

dimension, the coordinates are dependent of each other even when the covariance matrix is identity; therefore, a more13

sophisticated sensitivity analysis (Lemma D.1) is needed to establish angle shrinkage.14

Compared to tensor methods, EM is much simpler, and manifests linear dependency on the dimension d in terms of15

time and sample complexities (as opposed to polynomial for tensor methods).16

Assumptions17

As Reviewer 1 pointed out, our analysis is built upon several assumptions (a balanced mixture of 2 distributions with18

same covariance). We note that these assumptions are common among recent literature on global convergence of EM.19

Moreover, there exist examples of more general mixtures where global convergence is impossible, including mixture of20

3 Gaussians (see arXiv 1609.00978) or 2 unbalanced Gaussians (see arXiv 1810.11344). Additional comments below:21
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(i) Log-concavity is crucial. In our analysis, it guarantees that certain22

derivatives of the LS-EM operator are non-decreasing.23

In our experiment, if the ground-truth distribution is not log-24

concave, with symmetric density function 1
210<x≤0.5+

1
810.5<x<1.5+25

1
3211.5≤x<3.5 +

1
12813.5≤x<7.5 +

1
51217.5≤x<15.5 (defined symmetri-26

cally on the negative side), then LS-EM incorrectly converges to 027

when the initial solution β0 is close to 0 (see figure on the right).28

(ii) For model misspecification, we focus on fitting with Gaussian, as29

it is a typical and reasonable choice in practice. Experiments show30

that if the fitted distribution is not Gaussian, LS-EM may fail completely (Fig. 6 in Appendix of original paper).31

(iii) The assumption of symmetric parameters ±β∗ is just a form of centering and hence not essential to our results.32

It is definitely an intriguing problem to figure out the exact setting in which global convergence can be achieved, or how33

one can modify the standard EM algorithm to avoid spurious fixed points. Recent work in arXiv 1810.11344 demon-34

strated that over-paramerized EM1 converges globally for unbalanced (but still symmetric) 2GMM. By considering35

general log concave distributions, we view our work as another step towards a more complete theory.36

Experiments37

We totally agree on the importance of experiments. We did present numerical experiments for i) robustness under model38

misspecification, and ii) connection between LS-EM and classical EM, in the appendix due to page limit. Additional39

experiments (including the one above), which will be included in the final version, corroborate our theoretical findings40

and further explore the issues of model misspecification and sensitivity to the assumptions, as reviewer 1 suggested.41

Other Comments42

Comparison with Balakrishnan’s paper [BWY17]: When specialized to 2GMM in 1-D, our results match those in43

BWY17. For higher dimensions, we establish global convergence (the analysis in BWY17 is local); while we currently44

do not have explicit bounds on the convergence rate and sample complexity, we expect they would again match BWY17.45

Regularity Conditions: These conditions are explicitly explained in Section E of the appendix. They are indeed about46

differentiation under integral sign (as pointed out by Reviewer 2), and are satisfied by common log-concave mixtures.47

SNR Condition in Proposition 6.1: Reviewer 3 mentioned that this condition is strong. Note that Proposition 6.1 is a48

simplified version of the more general result established in the proof of the proposition (pp. 32). There we derived the49

following bound for the distance between the misspecified solution and the true solution: |β − β∗| ≤ 9σ
1−exp(−0.125η2) .50

This bound holds for any SNR η > 0; when the SNR is smaller, the bound becomes worse, as natural.51

1It considers the weight parameter as a variable in the EM algorithm, even though the weight is known apriori
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