
We thank the reviewers for the positive feedback on our motivation and algorithm. As most of the concerns are on our1

empirical study, we now address these concerns with additional experiments and some clarifications:2

More random seeds: We originally used 2 ran-
dom seeds as goal conditioned reinforcement
learning has a relative low variance from our
experience. We have re-run all the experiments
with 5 random seeds and all our results still hold.
The updated figure of the submitted paper’s Fig-
ure 2 is shown on the right.

3

Comparison with more baselines: 1) Hand tuned, fixed weights: We compare OL-AUX with hand-tuned weights4

either on a single auxiliary task, where the best fixed weight is found with grid search (Figure 1), or on all the auxiliary5

tasks where the best fixed weights are the final weights learned by OL-AUX (Figure 2). It shows that our method can6

adaptively combine auxiliary tasks and outperforms the best fixed weight. 2) No gradient balancing: In our original7

experiments, we compare to the cosine similarity method [Yunshu et al. 2018] with gradient balancing added for fair8

comparison. We show in Figure 3 that cosine similarity performs worse when gradient balancing is removed.9

Figure 1: Comparing handtuned
weight, single auxiliary task.

Figure 2: Comparing handtuned
weights, all auxiliary tasks.

Figure 3: Effect of gradient bal-
ancing on cosine similarity.

Figure 4: Atari seaquest

Empirical results on benchmark RL tasks: In Figure
4,5,6, we show that in three benchmark RL environments
in Atari, OL-AUX also outperforms all the baselines. The
base algorithm we use is A2C [Mnih et al. 2016]. All
hyper-parameters are the same as the ones used in the pa-
per or are default to A2C. The same set of auxiliary tasks
are also used. This shows that OL-AUX gives significant
improvement across different domains. Figure 5: Atari breakout Figure 6: Atari pong

10

Ability to separate harmful auxiliary tasks: In Figure 3 of the orignal paper, we show that AutoEncoder is a11

harmful auxiliary task for Finger Turn environment. Here, a toy example in Figure 7 with one positive auxiliary12

task and one harmful auxiliary task shows that our algorithm is able to avoid adversarial auxiliary tasks without13

any prior knowledge. In this 2d example, the main task loss is L(x, y) = x2 + y2. There are two auxiliary tasks,14

L1(x, y) = (x − 0.5)2 + (y − 0.5)2 and L2(x, y) = −L(x, y). Using a fixed weight for auxiliary tasks (Left), the15

agent converges to a sub-optimal point. Our method finds the optimum of the main task from different starting points16

(Middle). The auxiliary task weights during training for our method (Right) shows that our method is able to ignore L2,17

which is a harmful auxiliary task.

Figure 7: Ignoring adversarial auxiliary tasks
Figure 8: Learning with a binary reward
of {0, 1} in goal-conditioned RL.

18

Response to Reviewer 3: The MuJoCo environments we tested effectively all have sparse rewards, since scaling and19

translating the rewards from {-1, 1} to {0, 1} does not change the ordering of the value function or the optimal policy.20

Nevertheless, in Figure 8 we show one experiment using a negative reward of 0 where our method performs just as well.21

Additionally, most of our hyper-parameters in the paper are taken from the defaults of Hindsight Experience Replay.22


