
Technical detail. Well caught! The situation regarding [17] is even worse than Reviewer 3 highlighted: in infinite1

dimensional spaces, one cannot simply exchange trace and expectation by assuming linearity. The good news, however,2

is that we can prove tr(T1) <∞ under the mild assumptions in Hypotheses 2 and 3, rescuing the theorems in both [17]3

and our work. We will include this proof and discussion in the document, and alert the authors of [17] to this issue.4

In Hypotheses 2 and 3, we assume that instrument space Z is separable, and that RKHSHZ has continuous, bounded5

kernel kZ with feature map φ(z). By Proposition 3,HZ is separable, i.e. it has countable orthonormal basis {ei}∞i=1.6

Consider the space L2(HZ ,HZ) of Hilbert-Schmidt operators A : HZ → HZ with inner product 〈A,B〉L2 =7 ∑∞
i=1〈Aei, Bei〉HZ . Recall tensor product notation: for a, b, c ∈ HZ , [a⊗ b]c = 〈b, c〉HZa. By Parseval’s identity, we8

have two helpful results: ‖a⊗ b‖2L2
= ‖a‖2HZ

‖b‖2HZ
so a⊗ b ∈ L2(HZ ,HZ) [G, eq. 3.6]; and if C ∈ L2(HZ ,HZ)9

then 〈C, a⊗ b〉L2 = 〈a,Cb〉HZ [G, eq. 3.7].10

First, we verify the existence of covariance operator T1 ∈ L2(HZ ,HZ) satisfying 〈T1, A〉L2
= E〈φ(Z)⊗ φ(Z), A〉L2

.
By Riesz representation theorem, T1 exists if the RHS is a bounded linear operator. Linearity follows by definition.
Boundedness of kZ in Hypothesis 3 implies E[kZ(Z,Z)] <∞ and hence
|E〈φ(Z)⊗ φ(Z), A〉L2

| ≤ E|〈φ(Z)⊗ φ(Z), A〉L2
| ≤ ‖A‖L2

E‖φ(Z)⊗ φ(Z)‖L2
= ‖A‖L2

E[kZ(Z,Z)] <∞
Second, we verify T1 is indeed a covariance operator with tr(T1) <∞.11

〈f, T1g〉HZ = 〈T1, f ⊗ g〉L2
= E〈φ(Z)⊗ φ(Z), f ⊗ g〉L2

= E〈f, φ(Z)〉HZ 〈g, φ(Z)〉HZ = E[f(Z)g(Z)]

tr(T1) =

∞∑
i=1

〈ei, T1ei〉HZ =

∞∑
i=1

E〈ei, φ(Z)〉2HZ
= E

∞∑
i=1

〈ei, φ(Z)〉2HZ
= E‖φ(Z)‖2HZ

= E[kZ(Z,Z)] <∞

where the second line uses definition of trace, the penultimate expression in the first line, monotone convergence12

theorem [43, Theorem A.3.5] with upper bound ‖φ(z)‖2, Parseval’s identity, and boundedness of kZ .13

Limitations. Extensive use of IV estimation in applied economic research has revealed a common pitfall: weak14

instrumental variables. A weak instrument satisfies Hypothesis 1, but the relationship between a weak instrument Z and15

input X is negligible; Z is essentially irrelevant. In this case, IV estimation becomes highly erratic [B]. In [St], the16

authors formalize this phenomenon with local analysis. We recommend that practitioners resist the temptation to use17

many weak instruments, and instead use few strong instruments such as those described in the introduction.18
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Figure 9: Linear design

Experiments. We provide implementation details for KernelIV and its19

competitors in Appendix 7.10.2, including kernel choice and kernel hyperpa-20

rameter tuning. Theorem 4 details the performance of KIV with suboptimal21

n/m, parametrized by a. In Figure 9, we present a linear design [14] with22

h(x) = 4x−2. We will include Figure 5 in the main text, and move linear and23

sigmoid designs to the appendix. In Figure 10, we provide a robustness study24

of KernelIV applied to the sigmoid design with n + m = 1000, varying25

hyperparameter values for Guassian kernel kX . For comparison, our tuning26

procedure selects value 0.3. We will increase figure sizes.27
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Figure 10: Robustness study

Exposition. We will define e as unmeasured, confounding noise, and relate28

n/m to statistical efficiency earlier on. In Hypotheses 5 and 9, we will define29

the power of an operator in terms of its eigendecomposition. We will move30

the decay schedule for λ from Appendix 7.6 to Theorem 2 . We define Ωµ(z)31

in line 257, but we will restate this definition in Definition 2 and Hypothesis32

7 for clarity. We will replace ‘a.s.’ with ‘almost surely’ in Hypothesis 8.33
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