
We thank all three reviewers for their time and feedback. Below we have done our best to respond to the major concerns.1

[R1] Score-based learning. We’d like to emphasize that our paper focuses on score-based learning, and all the claims2

made in the paper are specifically in regards to score-based learning. See L70–74, and in particular L73–74 where we3

acknowledge that papers such as [21] and [23] achieve impressive results. These are newer methods, and do not shed4

much light on score-based methods, which are very popular in practice and have a long history. Part of the purpose of5

this paper is to (a) Shed light on the pros and cons of score-based methods vs. newer approaches and (b) To provide a6

comprehensive, rigorous mathematical framework through which to analyze score-based methods. These contributions7

have been acknowledged by R2 and R3, and we will be happy to revise the introduction and abstract accordingly to8

make this distinction more clear.9

[R1] Practicality. Please see L33–37, L43–48, and L294–301, where this is discussed explicitly. We have provided10

13 total references for both exact and approximate algorithms for solving this problem. For example, this estimator11

can be computed approximately using very fast coordinate descent methods for problems with 1,000s of nodes (ref12

[1]). Exact computation, as acknowledged at L45–46, is of course NP-hard. Furthermore, the reduction in sample13

complexity from s4 log p to s log p is substantial (see L30–34), and raises the important question of whether or not there14

exists a polynomial-time estimator that can achieve s log p sample complexity or better. Our work provides important15

theoretical justification for this inquiry (in addition to the existing body of work cited above).16

[R1] Assumptions. Please see the discussion above on score-based learning. Our analysis is the first score-based17

method to avoid faithfulness, and we propose a novel proof to do this. This is important since existing proofs in18

score-based learning crucially and fundamentally rely on faithfulness in order to learn a consistent structure (refs [5,19

40]; see also L74–88). Regrettably, at L6–7 this is not made clear, and we will be happy to clarify this in the revision.20

[R1, R3] Real data example. As pointed out at L43–44, our approach has been extensively studied in applications.21

Please see refs [1, 26, 51, 54, 68, 76] for real data examples, including a cytometry dataset [1], gene regulatory networks22

[26], S&P stock data [68], as well as real data examples from the BN repository [1, 51].23

[R2] Faithfulness. We appreciate the reviewer’s concern regarding our claims regarding faithfulness, and will be happy24

to modify and clarify these claims. It is true that the connection between strong faithfulness and the beta-min condition25

is not well-understood; see for example Uhler et al. (2013, AOS, p. 25): “...a thorough analysis of the ‘permutation26

beta-min’ condition and a comparison to the strong-faithfulness condition more generally is quite challenging and27

remains an interesting open problem.”28

[R2] Related work. We will be happy to expand our discussions and comparisons to related work, esp. recent work29

such as [21, 23, 52, 53, 73, 67], which provides an interesting contrast to the score-based method presented in our work.30

[R3] Min-trace DAGs. We thank the reviewer for raising the important practical question of how to interpret min-trace31

DAGs and what their relevance is in practice. As mentioned at L43–44, the estimator B̂ is very popular and used32

frequently in practice (e.g. refs [1, 26, 51, 54, 68, 76]), despite our having little theoretical understanding of this. In fact,33

prior to our work, it was an open question what the behavior of B̂ is. For example, does it converge, and if so, to what?34

We note that even the former question is surprisingly tricky; please see the discussion at L211–216. One of the main35

contributions of this work is to address these questions: Yes, B̂ converges, and we can in fact pinpoint what it converges36

to. As this reviewer acknowledges, proving this is nontrivial and required developing novel analytical techniques that37

can be applied more broadly. The importance of this result lies not in the fact that we might be interested in min-trace38

DAGs, but perhaps that we might not be! This is the reason why we mention “caution” at L50. Whether or not one39

would be interested in a min-trace (or equivariance) DAG depends on the application.40

We regret that this important discussion was omitted, and will be happy to make these issues more explicit, both in the41

introduction and in the conclusion, in the final version. We will also add some intuition on what min-trace means in42

practice, namely the DAG that minimizes the out-of-sample predictive loss, which has obvious practical interest.43

[R3] Real data example. Please see related discussion for R1 above.44

[R3] Gap condition. Since the problem considered here is at least as hard as p separate regression problems, requiring45

gap(Σ) = o(1) amounts to a very restrictive condition, and should not be expected in this setting. A similar argument46

would apply to the `2-estimation error as measured in Frobenius norm: We do not and should not expect ‖B̂ − B̃min‖F47

to vanish asymptotically—instead, we expect this to scale appropriately with p. A more reasonable ask is that the48

“average” gap per node vanishes, i.e. gap(Σ) = o(p), which can hold in high-dimensional setting where p = O(en), as49

discussed at L204–206. In order to obtain strictly weaker results (e.g. not including structure consistency for p > n), a50

gap of the same order was also assumed in [35] (Lemma 19) and [62] (Condition 5.1).51

Of course, as the reviewer notes, under very strong conditions, these quantities may vanish in the high-dimensional52

regime p→∞, and we are happy to add this discussion in the final version in order to clarify this point.53


