
We thank the reviewers for their time and constructive reviews. We find it encouraging that the ideas we presented were1

well-received. The comments from the reviewers were very helpful, and we are eager to use the feedback to further2

clarify the paper and add additional results. [Note: mixup(k) / Bern(k) = mixup / Bernoulli mixing k examples at a time]3

R1/R3: Additional experiments. We ran experiments on CIFAR10 with dh = 256 and dh = 1024. For CIFAR10 (256),4

our best result mixup(3) was 0.551± 0.006 compared to mixup(2) (0.547± 0.007) and our baseline (0.537± 0.004),5

the corresponding quoted result from ACAI is (0.5277± 0.0045). For dh = 1024, we get 0.610± 0.009 for mixup(2)6

vs baseline’s 0.596± 0.001 (due to time constraints of this rebuttal, we were unable to let the experiment fully converge7

– the quoted ACAI number for this is 0.6399± 0.0047). We also ran experiments for k > 3 on SVHN for dh = 2568

and achieved even better results in this regime, e.g. 0.742± 0.021 for mixup(4) vs 0.653± 0.014 for mixup(2).9

R3: ACAI implementation fix. We added in the missing loss term. In short, ACAI outperforms on MNIST/KMNIST,10

but on SVHN (both dh = 32 and 256) and CIFAR10 it does not perform well. We will add these new numbers in.11

R2: Disentanglement metric. We evaluated the disentanglement scores of our methods on the DSprite (see Beta-VAE12

paper) dataset. We found that Bernoulli(3) significantly outperformed (0.558 ± 0.01) the AE baseline (0.451 ± 0.027)13

and mixup(3) (0.511 ± 0.049) but not compared to a finely-tuned β-VAE (0.652 ± 0.017). This gives a stronger14

justification for Bernoulli mixup and its utility in the context of disentanglement.15

R1: “Why is the quality of features measured during training ?” We followed the ACAI paper, which also did this16

(i.e see their section 4). Also, as per your suggestion, we will rename ARAE to minimise confusion.17

R1: “Why is one method not consistently better than the other ?” We performed an analysis comparing the18

Lipschitz upper bound (see the ‘spectral norm’ paper from Miyato et al) of our autoencoder for different values of k,19

and it appears to increase as k gets larger. This may have implications on our results, and will be explored further.20

R2: “The authors claim that a "fundamental difference" between mixup and VAEs is that they impose no21

constraint, at least not in the probabilistic sense." I disagree with this statement.” What we meant was that, unlike22

in the VAE setting, we are not explicitly defining a prior function p(z) and enforcing the latent codes to be close to it23

(i.e. in a KL divergence sense). We agree in the sense that there is definitely a ‘prior’ induced with mixup (e.g. the24

independence assumptions with Bernoulli), but it is more implicit than what is done in VAEs. We will re-word this.25

R2: “...it is not clear from the paper whether I’d want to use any form of adversarial mixing to regularize my26

classifier compared to other...” Our idea is motivated by a specific problem in generalisation, which is that there may27

be certain combinations of latent factors that are poorly represented in the training data. Mixing allows us to explore28

these combinations. Furthermore, the paper ‘manifold mixup’ addresses this concern and shows that mixup behaves29

differently to other regularisation schemes, and is competitive with strong baselines (though only uses mixup with30

k = 2). In our work we focus on a wider class of mixing functions in the unsupervised case. We would like to explore31

these in the context of supervised learning but this is beyond the scope of our work. For more evidence that mixing is32

desirable – especially in the low data regime, see the ‘MixMatch’ and ‘MixFeat’ papers.33

R2: “The interpolation results (Fig 1) are surprisingly poor, with not much semantic interpolation ... ghosting34

...” The supplementary material contains many examples showing semantically meaningful interpolations, on both35

CelebA and the Zappos shoe datasets. We compare our results to pixel space interpolation and ARAE, and there is36

relatively less ghosting in the AMR interpolations of our approach.37

R2: “Please explain how the parameters of p = embed(y) are trained.” The mask is sampled using the reparameter-38

isation trick, which means we are able to backprop through the sampling step and back into the embedding function. Its39

parameters are updated in unison with those of the autoencoder. We will update/clarify these equations.40

R2: “Please make explicit that you used separate validation and test sets to eliminate any doubt that the results41

are biased.” For each experiment, three different seeds are run, and the best valid accuracy of each seed is taken and42

averaged. A val set was only used in our case, though this was an oversight. However, risk of overfitting the val set here43

is minimal since we are only training linear classifiers on top of the autoencoder bottleneck (the classification losses do44

not contribute grads to the autoencoder). If this is concerning, we would be happy to provide held-out test set results.45

R3: Addressing (1), our ACAI uses the JSGAN loss, though we also tried LSGAN as per their paper and this did not46

appear to make a difference. Assuming mixup with k = 2 the only difference is that we don’t predict mixing coef, and47

contrary to ACAI our generator also enforces reconstructions to look realistic by fooling D (which tries to classify them48

as fake). Regarding the usefulness of our proposed mixup for k > 2, for SVHN (256) and ablations, mixup with k > 249

is superior, as well as CIFAR10, and our Bern(3) results on disentanglement. (2) typo, this should be ‘ACAI mixup(2)’.50

For (3), for SVHN dh = 256 only the ACAI results quoted from their paper are superior. While this discrepency should51

not be downplayed, our own implementation of it (which is also shown in the table) does not perform as well, and this52

has less confounders at play since it is under the same experimental setup as our methods.53


