
We thank the reviewers for their comments.1

Reviewer 1. In the final draft, we will edit the exposition to make it friendlier to non-expert readers. Specifically,2

we will correct the reference to matrix A at the end of the introduction (line 68) and change it to matrix M . We will3

also move the definitions of DWi,:
and DW:,j

to a point before their first use in line 89. We will provide the standard4

definition for non-negative rank.5

Like [RSW16], our setting involves a more general family of weight matrices W than just binary matrices. Since6

our proofs dealt with weight matrices that were not necessarily binary matrices, we wanted our experiments to use7

non-binary weight matrices to highlight the fact that we weren’t just studying matrix completion. We have additional8

experiments involving the NIPS and synthetic datasets that use binary weight matrices which turn out similarly to our9

current experiments. For the final draft, we would be happy to add these experiments to the appendix, as well as some10

additional experiments with varying regularization parameter values.11

Reviewer 2. We will address speed and SVD-related issues in the comments to Reviewer 3.12

We believe the contribution of this work over [RSW16] is more than incremental because even though the algorithmic13

steps may be similar, the proof techniques required are quite different. Most provable sketching results for Low Rank14

Approximation (LRA) problems do not have sketch sizes that can be significantly smaller than the rank. The small15

sketch size means imitating the analysis of [RSW16] is insufficient because when one solves a regression problem on a16

matrix with fewer rows than columns one always gets 0. Furthermore, the proof was achieved without the incoherence17

assumptions on the input matrix that are popular in the matrix completion literature. Thus, we needed a finer analysis18

based on condition numbers and tail bounds on the singular vectors because directly following the approach of [RSW16]19

will fail to give sharp enough inequalities. We elaborate on this in lines 101 to 108.20

We also improve the results of [RSW16] by providing fast 2poly(r·sd) algorithms (as opposed to npoly(r·sd)) in the case21

when the ratio of the largest to smallest entries of the weight matrix is controlled and the largest singular value of our22

regression matrices is small relative to lambda. We achieve this by replacing the Cramer’s rule-based approach in23

[RSW16] with different techniques from optimization like Richardson’s Iteration.24

Reviewer 3. The primary focus of our work is on the theoretical side rather than the experimental side. We would like25

to reiterate that our algorithm has a greatly improved running time when compared to other (1 + ε)-approximation26

algorithms for our regularized, weighted setting. The theoretical running time is not being compared to that of singular27

value decomposition because SVD is not a (1 + ε)-approximation algorithm for the regularized, weighted setting.28

We included SVD in our experiments because it is widely used in practice for LRA type problems and to demonstrate29

that it results in high objective values for the loss function. Given the significantly higher objective values and the fact30

that SVD does not provide a (1 + ε)-approximation algorithm for our problem (because it is NP-complete) we did31

not think it was appropriate to compare its speed with our algorithm. However, we did think it was fair to compare32

the sketched version of our algorithm to an unsketched version of our algorithm. As described in line 299, we ran33

experiments that showed that alternating minimization with sketching was between 1.43 and 2 times as fast as alternating34

minimization without sketching. We can add a table to the final draft.35

We also wanted to emphasize in line 258 that the purpose of the experiments was to show that even if one sketches36

down to the statistical dimension, which can potentially be much lower than the rank of the matrix, it is possible to do37

this without blowing up the objective value in regularized weighted LRA. While the focus on the theoretical side of the38

paper was on the running time, the focus on the experimental side of the paper was on the dimension reduction.39

This is because this algorithm and the algorithm in [RSW16] which we improve on both use polynomial system solvers40

which are costly. In fact, the implementation in [RSW16] could barely handle target ranks and sketching dimensions41

larger than 2 and matrix dimensions larger than 100. Our experiments involve target ranks of at least 50 and matrix42

dimensions in the 1000s. Thus, we feel that the dataset sizes show a marked improvement over the prior work but we43

can include an even larger dataset for the final draft.44

Although they are costly, polynomial system solvers do have provable theoretical guarantees which is why we invoked45

them in the theoretical part of our paper. In practice, heuristics like alternating minimization are often faster but they46

lack provable theoretical guarantees without making assumptions on the input, which we do not. Since our experiments47

were not using the polynomial system solver technique described in the theoretical sections of our papers but they were48

using the same sketches, we decided to focus the experiments on dimension reduction.49

We obtained our λ value by hand-tuning and felt that it was in a sweet spot that avoided underfitting and overfitting. We50

can add experiments with varying regularization parameter values, or λ values tuned by cross-validation, in the final51

draft.52


