
We thank the reviewers for their positive comments on the novelty and performance improvement. We will release the1

code for paper reproduction and facilitating using and building upon this method as R1 and R3 suggested.2

R1: Qualitative comparisons via visualization to other meta-learners, especially to task-adaptive meta-learners.3
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Figure 1. Class activation mapping (Cam) visualization on a 5-way
1-shot task with 1 query sample per class.

A: We compare the visualization results of CAN to other meta-4

learners, Relation Network (RN)[33], MAML [6] and TADAM [23].5

As shown in Fig. 1 (a), the features of RN usually contain non-target6

objects since it lacks an explicit mechanism for feature adaptation.7

MAML performs gradient-based adaptation, which makes the model8

merely learn some conspicuous discriminative features in the sup-9

port images without deeping into the intrinsic characteristic of the10

target objects. As shown in Fig. 1 (b), MAML attends to ship for the11

groenendael support image to better distinguish it from the golden12

retriever category, resulting in a confusing location and misclassi-13

fication of the groenendael category. TADAM performs task-dependent adaptation and applies the same adaptive14

parameters to all query images of a task, thus it is difficult to locate different target objects for different categories. As15

shown in Fig. 1 (c), TADAM mistakenly attends to the dog for worm fence query image. In contrast, CAN processes the16

query samples with different adaptive parameters, which allows it to focus on the different target objects for different17

categories shown in Fig. 1 (d). We will add these qualitative comparisons into the main text in the final version.18

R1: Ablation that modifies a standard Prototypical Network to use the proposed feature-wise distance metric.19

A: Following your suggestion, we compare the standard Prototypical Network (PN) with Prototypical Network20

using feature-wise distance metric (PN-F) on miniImageNet. PN-F only brings a marginal improvement while CAN21

significantly outperforms it (PN/PN-F/CAN: 1-shot accuracy: 61.30/61.94/63.95, 5-shot accuracy: 76.70/76.91/79.44).22

The results further verify that the significant improvement of CAN to PN is due to the proposed cross attention module.23

R1: Apply the proposed joint training schema to other commonly-used meta-learners.24

A: We try another two meta-learners, Matching Network (MN) [36] and Relation Network (RN) [33], to further verify the25

Table 1. Performance with joint training.
models MN MN-JT RN RN-JT
1-shot 55.29 59.14 51.25 54.29
5-shot 67.74 73.81 64.45 67.58

effectiveness of the proposed joint learning schema . We re-implement MN and RN with26

ResNet12 as backbone on miniImageNet. As shown in Tab. 1, our joint training schema27

(-JT) significantly improves the performance with respect to different meta-learners.28

R1: Experiment on a dataset of cluttered scenes for few-shot classification.29

A: Following your suggestion, we use a more cluttered dataset, a scene recognition dataset miniPlaces365 1. A scene30
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Figure 2. Cam visualization on input pairs from same class.

image usually contains multiple objects, while not all the objects are31

related to this scene. Therefore, it requires the models to accurately32

locate the target objects for correct classification. We compare CAN33

to MN, RN and PN with the same backbone and joint-training schema34

on miniPlace365. CAN achieves more gain, with an improvement up35

to 6% (MN/RN/PN/CAN: 1-shot: 48.16/44.52/48.34/54.44). The results demonstrate that CAN is more efficient on36

cluttered scenes. For qualitative analysis, we compare the visualization results in Fig 2. As can be seen, other methods37

usually highlight non-target objects, while CAN can attend to the targets among multiple objects of the input images.38

R2: Compare time complexity to other methods.39

A: (i) Our cross attention module (CAM) only increases marginal time cost. The cross-correlation maps between a40

query image and all support images can be simply worked out by one matrix multiplication, which is lightweight when41

it is used in high-level, sub-sampled feature maps. To illustrate the extra cost of CAM, we compare the time cost of the42

backbone for feature extraction and CAM for cross-correlation estimation in a 5-way 1-shot task. The backbone takes43

0.041s for a query data, while CAM only takes 0.002s, equivalent to only ∼4% relative time increase over the backbone.44

(ii) Tab. 2 further compares the time cost of our method to others. Some methods [36,31,33,13,6] use a 4-layer Conv as45

the backbone thus take relatively lower time cost. Even though, our CAN is still comparable even superior to these46

methods in term of time cost, with a performance improvement up to 10%. The others use the same backbone as CAN,47

but require following up modules such as model update per task [32,12], gradient-based parameter generation [19], or48

expensive condition generation [23], which all incur more time overhead than CAM. Overall, Tab. 2 shows that CAN49

outperforms other methods without excessive overhead. We will report the time complexity of different methods in the50

comparison table (Tab1 in the main paper) in the final version.
Table 2. Time overhead of different methods. All times are reported per query data in a 5-way 1-shot task on one NVIDIA 1080Ti GPU.

model MN[36] PN[31] RN[33] DN4[13] MAML[6] MTC[32] MetaOptNet[12] adaNet[19] TADAM[23] CAN
test time (s) 0.021 0.018 0.033 0.049 0.103 2.02 0.096 1.371 0.079 0.044

51
R3: Novelty of transductive method and Release the code for reproduction.52

A: Thank you for your positive comments on the writing and performance improvement. (i) For the second contribution,53

the transductive method, we are the first to explore the idea that incorporates the unlabeled query data to refine54

prototypes in a meta-learning setup. We demonstrate it is effective to alleviat the low-data problem on transductive55

few-shot setting, which outperforms prior work [15] by a large margin, up to 8% improvement. (ii) All implementation56

details of CAN are given in the ’Experiment Setup’ section. We will release the code and trained models for paper57

reproduction. In addition, we will submit the code with the camera-ready version once this paper is accepted.58

1We randomly select 100 classes with 600 images per class from the training set of Places365 to form miniPlace365. The classes
are divided into 60 classes for training, 20 classes for validation and 20 classes for testing. The input images size is 84× 84.


