
We would like to sincerely thank all our reviewers for their valuable feedback and insightful comments. We are1

committed to doing our best in addressing their concerns and suggestions in the final version of the paper. We would2

like to reiterate that apart from making the suggested clarifying revisions to our paper, we will release all of the datasets,3

source code and hyper-parameter configurations used to ease the reproducibility of our work.4

Formal meaning of the word “family” in Section 4.2 (Review #1): In experiments on generalizability, we’ve used5

the term “family” in lieu of a more formal choice: “distribution”. More precisely, we’re interested in evaluating whether6

a placement policy trained with graphs sampled from a particular distribution can generalize to different, unseen graphs7

sampled from the same distribution. In our evaluation, we pick these distributions to correspond to neural network8

architectures designed for a specific task, such as image recognition (cifar-10), language modeling (ptb) and language9

translation (nmt). Appendix A.3 describes how we generated neural networks for each of these tasks using the ENAS10

method for cifar-10 and ptb, and variations of the NMT model for nmt. We will clarify this point in the revision.11

Choice of REINFORCE algorithm for RL optimization (Review #2): We’ve chosen REINFORCE for RL opti-12

mization in order to establish a fair comparison to the prior work, a majority of which uses it as well (Mirhoseini et13

al. (2017), Mirhoseini et al. (2018) and Paliwal et al. (2019)). Furthermore, we believe that our core contributions are14

orthogonal to any specific choice of the optimization algorithm used. However, we do agree that it would be interesting15

to verify if our results improve with the use of a better algorithm that plays a more significant role in variance reduction.16

We leave this investigation for future work.17

Graph Neural Network architecture (Review #2): Placeto’s policy is computed by running two separate, indepen-18

dent graph neural networks concurrently and concatenating node embeddings obtained from them together to form19

embeddings that get used for placement decisions. The first graph neural network iteratively aggregates messages for20

k steps “bottom-up” from the children nodes using the functions f and g as follows: x(i+1)
v ← g(

∑
u∈ξ(v) f(x

(i)
u )),21

where ξ(v) are the children of node v. The second graph neural network performs a similar update “top-down” from22

the parent nodes instead. k is a tunable hyperparameter, which can be set to sweep the entire graph or to integrate23

information from a local neighborhood of each node that is sufficient for making good placement decisions. In our24

experiments, we found that sweeping the entire graph is computationally expensive and provides little benefit compared25

to k = 8. Hence we use k = 8 in all of our experiments. We will revise Section 2.2 and Figure 3 to clarify this point.26

Regarding the use of feed-forward neural networks in the message passing operations of the GNN, our architecture is27

similar to past work (e.g., Mao et al. (2018), Battaglia et al. (2018)).28

Additional details: We use a graph embedding size of E = 8. All our feed-forward networks have a single hidden29

layer. We will add these details to the appendix section A.7 and additionally, release a source file with all of of our30

hyper-parameter configurations along with the source code for easy reproducibility of our results.31

Ablation study of bidirectional GNN (Review #2): We agree that it would make for an interesting addition to compare32

our bi-directional approach to a more standard one where messages from all the neighbors (parents and children nodes)33

are aggregated jointly at each step of the message passing update operation. We plan on performing this ablation study34

and including its results in the final version of our paper.35

Clarification on iterative placement improvement vs. RNN (Review #2): While the RNN approach could indeed36

condition placement of future nodes on those chosen for prior nodes, our formulation makes this conditioning explicit37

in the state space of the MDP, since the state includes the current placements as a feature associated with each node. By38

contrast, prior RNN-based architectures (e.g., the Encoder/Decoder approach in Mirhoseini et al.) must realize such39

conditioning implicitly via the hidden state of the RNN. As the reviewer observes, making this conditioning explicit40

also enables us to perform multiple epochs of placement improvements. Although we failed to mention this, we actually41

do perform multiple epochs of iterative placement improvement in our experiments. More specifically, we found that42

performing 2 rounds of epochs strikes a good balance between performance and speed. We will revise Section 2.1 to43

explain this point precisely. In particular, we will modify the MDP description to state that the episode ends in n|V |44

steps, where n is the number of epochs.45

Stopping criterion used for Section 4.1 (Review #2): The stopping criterion used to determine the training time46

column in Table 1 is the numerical convergence of reward signal over a long enough measurement window. Precisely,47

the reward value doesn’t change more than 2% in a measurement window of 1000 episodes.48

More succinct choice of reward formulation (Review #2): Thank you for the suggestion! We will amend the reward49

section in the Appendix A.7 to reflect this more succinct ReLU -based expression.50

Node ordering used for training (Review #3): We pick an arbitrary topological ordering (in which parents nodes51

appear before their children) by default. This ordering is indeed not learned. However, as we show in Section 4.3, the52

order does not impact Placeto, and can even be completely random (not topological) without having a significant impact53

on generalizability of the learned policy for Placeto.54


