- **To Reviewer 1**: For question (1), the correlation among weights in kernels was indeed considered in the early design of
- MetaQuant: the meta gradient of weights is determined by its surrounding weights and the gradient of its quantized weight. However, such an implementation showed roughly 10-20% drop in performance compared to the current design.
- weight. However, such an implementation showed roughly 10-20% drop in performance compared to the current design. Besides, the kernel sizes differ across layers in a deep neural network: a meta quantizer that receives 3×3 kernel as
- Besides, the kernel sizes differ across layers in a deep neural network: a meta quantizer that receives 3×3 kernel as inputs cannot be applied to the layers with 1×1 kernels. The independent process for each weight in the current design
- 6 endows MetaQuant with generalization to arbitrary architectures of neural networks.
- 7 For question (2), we further tested training time per iteration as suggested for MetaQuant and DoReFa with STE using
- ResNet20 in CIFAR10 (Intel Xeon CPU E5-1650 with GeForce GTX 750 Ti). MetaQuant costs 51.15 seconds to finish
- ⁹ one iteration of training while baseline method uses 38.17s. We will add this training time analysis in final version.
- ¹⁰ For question (3), we further conducted experiments and added some state-of-the-art results of binary / ternary network on ImageNet in Table 1:

Network	Method	bits	Top 1/5 drop (%)	Network	Method	bits	Top 1/5 drop (%)	Network	Method	bits	Top 1/5 drop (%)
ResNet18	MetaQuant	1	6.32/4.31	ResNet18	MetaQuant	2	5.17/3.59	MobileNetV2	MetaQuant	4	2.10/0.38
	STE*	1	7.70/5.43		STE	2	6.29/4.58		STE	4	3.71/1.89
	FLO[1]**	1	3 55/2 65		TTO[2]***	2(Ternary)	3.00/2.00				

Table 1: Comparison experiments in ImageNet.*: The baseline methods in paper that use dorefa as forward and STE as backward. **: ELQ is a combination of a series of previous quantization methods and tricks on incremental quantization. MetaQuant focuses more on how to improve STE-based training quantization, without any extra loss and training tricks. ***: TTQ is a non-symmetric ternarization with $\{0, \alpha, -\beta\}$ as ternary points. MetaQuant follows dorefa using a symmetric quantization which leads to efficient inference.

11

- ¹² To Reviewer 2: Regarding "in eq. (8) the term $\tilde{\mathbf{W}}$...", we
- would like to clarify the computation order in a forward pass.
- ¹⁴ In fact, for an iteration t, $\tilde{\mathbf{W}}_t$ is computed after ϕ as shown
- in the computation graph in Fig.2 of the paper. A more
- 16 detailed illustration is shown in Fig.1: The meta quantizer
- 17 \mathcal{M}_{ϕ} takes $\partial L / \partial \hat{\mathbf{W}}_{t-1}$ and $\tilde{\mathbf{W}}_{t-1}$ in the previous iteration 18 as inputs to compute its output, parameterized by ϕ . The

Figure 1: Learning process of the meta quantizer.

- ¹⁹ output of meta quantizer is then added to \mathbf{W}_{t-1} to generate $\tilde{\mathbf{W}}_t$ in the current iteration t. Therefore, $\partial \tilde{\mathbf{W}} / \partial \phi$ can be
- ²⁰ computed if we track the path from ϕ to $\tilde{\mathbf{W}}_t$.
- Regarding "... there seems to be a chicken-egg problem", the meta quantizer is actually linked to the final loss L of the
- base network with the following computation path: $\phi \to \Delta \mathbf{W} \to \mathbf{\tilde{W}} \to \mathbf{\tilde{W}} \to L$, according to Fig.1. In detail: Step 1:

In iteration t, $\partial L/\partial \hat{\mathbf{W}}_{t-1}$ and $\tilde{\mathbf{W}}_{t-1}$ (noted they are from the previous iteration) are fed into **meta quantizer** as data

- to generate meta gradient ΔW . Step 2: ΔW contributes to \tilde{W}_t , which is quantized to \hat{W}_t . Step 3: \hat{W}_t is involved
- ²⁵ into convolution or fully connected operation with input features from the base network, finally leads to the **loss**.
- Intuitively, we can regard $\partial L/\partial \hat{\mathbf{W}}_{t-1}$ and $\tilde{\mathbf{W}}_{t-1}$ from previous iteration as data to meta quantizer (ϕ) for generating a
- ²⁷ component of $\hat{\mathbf{W}}_t$, and this process is differentiable. We can get $\partial L/\partial \hat{\mathbf{W}}_t$ using backpropagation, which can be passed to ϕ by chain rules.
- 29 Regarding "... should the loss function of the base network be used for training ...", note that the goal of base network is
- to minimize the final prediction loss while the aim of the meta quantizer is to provide accurate gradient $\partial L/\partial \hat{\mathbf{W}}$. Ideally,
- 31 the meta quantizer should be trained using 'ground-truth gradients' as regression values. However, such 'ground-truth
- 32 gradients' are inaccessible in practice. That's why STE is used to approximate the gradients in previous methods. In
- ³³ order to train the meta quantizer without ground-truth values, we instead treat the final prediction loss of the base
- network as indirect supervision. The final prediction loss could guide the meta quantizer towards reliable estimation for
- ³⁵ 'ground-truth gradients'. Therefore, in MetaQuant, the loss function of base network is used to train meta quantizer.
- ³⁶ Empirically, this indirect training shows better performance and faster convergence than STE in our experiments.
- ³⁷ For the writing issues, thanks for pointing then out. We will correct them in the final version.
- To Reviewer 3: Thanks for your comments. In fact, we conducted experiments in ImageNet in Table.3 on page 7 in
- the original submission. Here, we have further conducted experiments, and added more state-of-the-art results of binary
- 40 / ternary network on ImageNet in Table.1 for comparison.

41 References

44 [2] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. arXiv preprint arXiv:1612.01064, 2016.

 ^[1] Aojun Zhou, Anbang Yao, Kuan Wang, and Yurong Chen. Explicit loss-error-aware quantization for low-bit deep neural networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 9426–9435, 2018.