
To Reviewer 1: For question (1), the correlation among weights in kernels was indeed considered in the early design of1

MetaQuant: the meta gradient of weights is determined by its surrounding weights and the gradient of its quantized2

weight. However, such an implementation showed roughly 10-20% drop in performance compared to the current design.3

Besides, the kernel sizes differ across layers in a deep neural network: a meta quantizer that receives 3× 3 kernel as4

inputs cannot be applied to the layers with 1× 1 kernels. The independent process for each weight in the current design5

endows MetaQuant with generalization to arbitrary architectures of neural networks.6

For question (2), we further tested training time per iteration as suggested for MetaQuant and DoReFa with STE using7

ResNet20 in CIFAR10 (Intel Xeon CPU E5-1650 with GeForce GTX 750 Ti). MetaQuant costs 51.15 seconds to finish8

one iteration of training while baseline method uses 38.17s. We will add this training time analysis in final version.9

For question (3), we further conducted experiments and added some state-of-the-art results of binary / ternary network10

on ImageNet in Table 1:

Network Method bits Top 1/5 drop (%) Network Method bits Top 1/5 drop (%) Network Method bits Top 1/5 drop (%)

ResNet18
MetaQuant 1 6.32/4.31

ResNet18
MetaQuant 2 5.17/3.59 MobileNetV2 MetaQuant 4 2.10/0.38

STE∗ 1 7.70/5.43 STE 2 6.29/4.58 STE 4 3.71/1.89
ELQ[1]∗∗ 1 3.55/2.65 TTQ[2]∗∗∗ 2(Ternary) 3.00/2.00

Table 1: Comparison experiments in ImageNet.∗: The baseline methods in paper that use dorefa as forward and STE as backward. ∗∗: ELQ is a combination of a series
of previous quantization methods and tricks on incremental quantization. MetaQuant focuses more on how to improve STE-based training quantization, without any
extra loss and training tricks. ∗∗∗: TTQ is a non-symmetric ternarization with {0, α,−β} as ternary points. MetaQuant follows dorefa using a symmetric quantization
which leads to efficient inference.

11

Meta	Quantizer			
Conv / FC

features

Figure 1: Learning process of the meta quantizer.

To Reviewer 2: Regarding “in eq. (8) the term W̃ ...”, we12

would like to clarify the computation order in a forward pass.13

In fact, for an iteration t, W̃t is computed after φ as shown14

in the computation graph in Fig.2 of the paper. A more15

detailed illustration is shown in Fig.1: The meta quantizer16

Mφ takes ∂L/∂Ŵt−1 and W̃t−1 in the previous iteration17

as inputs to compute its output, parameterized by φ. The18

output of meta quantizer is then added to Wt−1 to generate W̃t in the current iteration t. Therefore, ∂W̃/∂φ can be19

computed if we track the path from φ to W̃t.20

Regarding “... there seems to be a chicken-egg problem”, the meta quantizer is actually linked to the final loss L of the21

base network with the following computation path: φ→ ∆W→ W̃→ Ŵ→ L, according to Fig.1. In detail: Step 1:22

In iteration t, ∂L/∂Ŵt−1 and W̃t−1 (noted they are from the previous iteration) are fed into meta quantizer as data23

to generate meta gradient ∆W. Step 2: ∆W contributes to W̃t, which is quantized to Ŵt. Step 3: Ŵt is involved24

into convolution or fully connected operation with input features from the base network, finally leads to the loss.25

Intuitively, we can regard ∂L/∂Ŵt−1 and W̃t−1 from previous iteration as data to meta quantizer (φ) for generating a26

component of Ŵt, and this process is differentiable. We can get ∂L/∂Ŵt using backpropagation, which can be passed27

to φ by chain rules.28

Regarding “... should the loss function of the base network be used for training ...”, note that the goal of base network is29

to minimize the final prediction loss while the aim of the meta quantizer is to provide accurate gradient ∂L/∂Ŵ. Ideally,30

the meta quantizer should be trained using ‘ground-truth gradients’ as regression values. However, such ‘ground-truth31

gradients’ are inaccessible in practice. That’s why STE is used to approximate the gradients in previous methods. In32

order to train the meta quantizer without ground-truth values, we instead treat the final prediction loss of the base33

network as indirect supervision. The final prediction loss could guide the meta quantizer towards reliable estimation for34

‘ground-truth gradients’. Therefore, in MetaQuant, the loss function of base network is used to train meta quantizer .35

Empirically, this indirect training shows better performance and faster convergence than STE in our experiments.36

For the writing issues, thanks for pointing then out. We will correct them in the final version.37

To Reviewer 3: Thanks for your comments. In fact, we conducted experiments in ImageNet in Table.3 on page 7 in38

the original submission. Here, we have further conducted experiments, and added more state-of-the-art results of binary39

/ ternary network on ImageNet in Table.1 for comparison.40

References41

[1] Aojun Zhou, Anbang Yao, Kuan Wang, and Yurong Chen. Explicit loss-error-aware quantization for low-bit deep neural networks. In Proceedings of the IEEE Conference on Computer Vision42
and Pattern Recognition, pages 9426–9435, 2018.43

[2] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. arXiv preprint arXiv:1612.01064, 2016.44


