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We thank all the reviewers for your time in reviewing this paper and also for your suggestive comments. We would like3

to make the following clarifications.4

To Reviewer 15

Q1: i) More explanation for Eq.(9). ii) why αk is a regularization parameter? iii) why early-stopping is nec-6

essary? i) Eq.(9a)-(9d) describes one iteration of the optimization process, which is actually a discretization of a7

dynamic system Ref.[20] in paper or [3] below. ii) Such dynamics are known as inverse scale spaces [1, 2], leveraging a8

regularization path consisting of sparse models at different levels from the null to the full. At iteration k, the cumulating9

time τk =
∑k

i=1 αi can be regarded as the inverse of the generalized Lasso regularization parameter λ: the larger10

is τk, the smaller is the regularization and hence the more nonzero parameters enter the model. iii) Following the11

dynamic system, the model gradually grows from sparse to dense models with increasing complexity. In particular as12

τk → ∞, the dynamics may reach some over-fitting models when noise exists like our case, equivalent to a full model13

in generalized Lasso of minimal regularization. To prevent such overfitting models in noisy applications, early stopping14

is necessary to find an optimal model by cross validation. We will add detailed remarks if accepted.15

Q2: Macro- and Micro- Fs. Yes, they are the same as the metrics used in the multi-label setting. Please see our16

Ref.[28] in the main paper for more details.17

Q3: Some typos to be corrected. We will carefully fix all the typos and improve the grammar in the new version if18

accepted.19

To Reviewer 220

Q1: More explanations on the inequality constraints. As pointed out by the reviewer, we use a closed domain21

approximation of the original open domain constraints to improve the stability in the following two aspects. i) The22

convergence property of the gradient projection method relies on the projection theorem. Unfortunately, this theorem23

holds only for closed and convex feasible sets. The approximation makes the original convex set closed, thus obeys the24

projection theorem. ii) Such a closed domain constraint induces a closed-form solution and improves the quality of the25

solution to avoid ill-conditioned cases being too close to zero.26

Q2: The setting for human age and WorldCollege ranking. They follow the same settings with the simulated study.27

We will clarify it if accepted.28

Q3: Null users in Fig.5. The users that do not appear in Fig.5 have almost zero distance toward the common parameter.29

This validates the effectiveness of our proposed method to select abnormal users from the crowd. We will improve the30

descriptions if accepted.31

To Reviewer 332

Q1: Add some discussions on the decomposition property. We call Pabn the strong signals, since it corresponds to33

the non-zero users in the sparse parameter Γ. Such strong signals induce a sharp reduction of the loss and dominate34

the sparse penalty function. The residual between P and Pabn consists of the parameters that fail to give a significant35

reduction of the loss function, that can be of either weak signals (the users are not of much difference to the common)36

or random noise, as shown in Sec. 2.3.37

Q2: Missing users in Fig.5. Please see the answers for Q3 of Reviewer 2.38
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