
We thank the reviewers for their feedback. We plan to release source code for all experiments done in the paper.1

Comparison to Other Models / Drawbacks (R1) We compare EBMs to other generative models in Figure 1 on2

CIFAR-10. EBMs are faster to train than other likelihood models, with fewer parameters, but are more expensive3

than GAN based models (due to Langevin dynamics sampling), and slower to sample. Training time for PixelCNN++4

and Glow are from reported values in their papers, while sampling time and parameters were obtained from released5

code repositories. We have added the table to the appendix of the paper and added discussion on these trade-offs and6

intractability of likelihood evaluation in the main paper.7

Models Parameters Training Time Sampling Time

EBM 5M 48 3 Hour (Variable)
PixelCNN++ 160M 1300 72 Hour
Glow 115M 1300 0.5 Hour
SNGAN 5M 9 0.02 Hour

Figure 1: Comparison of parameters, training time (GPU hours),
and sampling time (for 50000 images) on CIFAR-10. For EBM,
sampling time depends on steps of sampling. We used 3 hours
of sampling to generate quantitative metrics, but sampling can be
much faster (around 0.2 hour) with reduced diversity.

Formatting (R1, R3) Following R1, R3’s comments,8

we have added captions to all figures.9

Clarifications on Experiments (R1) Following R1’s10

suggestion, we have added a more detailed description11

of the experimental setup for each task from section 4-712

in the appendix of the paper. We further plan to release13

source code for every section to further clarify experi-14

ments, as well as pretrained models.15

Minor Issues (R1, R2, R3) Following R1, we16

have changed the Helmholtz Machine reference to17

RBMs/Boltzmann machines in our paper. We have fixed the spelling issues pointed out by both R2 and R3.18

Online Learning/Discussion (R2) Our motivation to include online learning experiments is the same as our mo-19

tivation to include out-of-distribution and adversarial robustness experiments: current deep learning models exhibit20

a number of peculiar failure modes. Susceptibility to adversarial perturbations and distribution shift are two, but21

catastrophic forgetting is another. Excitingly, we are finding that energy-based models don’t seem to be as susceptible to22

these failure modes. Although a more detailed study on each of these topics is needed, we hope that by highlighting all23

these intriguing results (including online learning), we can better stimulate the machine learning community to conduct24

further research on EBMs. But if the reviewers still feel that online learning results are superfluous, please let us know25

in the meta-review and we will be happy to shorten or remove them.26

Following R2’s suggestion, we have added an additional paragraph of discussion on future work. Algorithmically, we27

think it would be interesting to explore methods for faster sampling, such as adaptive HMC, as well as other techniques28

such as score/moment matching training of EBMs. Empirically, we think it would be interesting to explore, extend, and29

better understand results we’ve found, in directions such as compositionality, out-of-distribution detection, adversarial30

robustness, and online learning. Furthermore, we think it may be interesting to apply EBMs on other domains, such as31

text, where predominant models are likelihood based and as a means for representation learning.32

Historical Ensembles (R2) We find that generation diversity appears to improve logarithmicly with the number of33

ensembles, with marginal gains above an ensemble of 10 models. We have add this to the paper.34

Mode Evaluation (R3) Following R3, we evaluated the number of modes under the stacked MNIST task. We35

obtained all 1000 modes with a KL divergence of 0.79, which compares favorably to [Metz et al., 2016]. However,36

such quantitative metrics do not measure mode coverage well in EBMs, as they measure the probability distribution37

of the sampler as opposed to that of an EBM. Sampling with finite steps of MCMC can be biased towards certain38

images and completely ignore other high likelihood modes of the EBM. Instead, we believe our qualitative evaluation39

of mode coverage allows mode coverage even in regions that are difficult for a sampler to generate. Furthermore our40

compositionality results, where we are able to combine independent conditional EBMs to generate precise dSprites41

images, show that each conditional model has modes at all 737280 combinations in dSprites.42
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Figure 2: Low Temperature (High
likelihood mode) vs High Temperature
(Low Likelihood mode) in Glow Model

Saturation/Image Recovery (R3) We illustrated the worst case recoveries of43

images in the bottom row of the figure 4b in the paper. In such scenarios, gradients44

for MCMC sampling may be biased towards to a different image, leading to an45

overall image change. However, this does not imply a lack of a mode at the46

correspond image, as when the model is initialized with a ground truth image,47

the image is maintained. The saturation effect in the corresponding images is due48

to sampling converging to high likelihood modes. Such high likelihood modes49

are saturated images because these saturated images are smoother and thus more50

explainable. This phenomenon is a ubiquitous trait of many likelihood based deep51

generative models. We illustrate in Figure 2 the same effect in GLOW, where52

lower temperature samples (high likelihood images) (right) and more saturated53

than higher temperature samples (low likelihood images) (left). We have added these clarifications to the paper.54

Related Work (R3) We have addressed and added the related work suggested by R3 in the paper. Xie et al. [2016]55

applies Langevin sampling on simple datasets of up to 4 images. Ingraham et al. applies Langevin sampling on the56

separate domain of protein folding, and add multiple explicit losses on sampling as well as an additional refinement57

network on top of sampling to allow effective generation.58


