
We thank the reviewers and the editor for their reviews and helpful comments, which will improve our manuscript. We1

are gratified to see Reviewer 2 (R2) write that “this paper is likely to become influential” and “is novel, well-written2

and important.” We take seriously R2’s suggestion to change our method’s acronym and thank him/her for pointing out3

several references, which we have added to the paper. We have also followed the reviewer’s suggestion to illustrate4

CQR using the heavy-tailed Cauchy distribution. As predicted by R2, this experiment indeed shows a clear advantage5

of CQR over split and locally adaptive conformal prediction. We have added this example to our manuscript.6

Reviewer 1 (R1) observes that, under mild conditions, classical conformal prediction is valid for any regression7

algorithm and any conformity score function. This is obviously true and is noted in Section 5 of the manuscript.8

Therefore, the crucial question is this: which regression algorithm and conformity score should one then use? In9

this respect, our work marks a significant departure from the whole body of research built on the original version of10

conformal prediction, for conditional mean regression. We argue that the new types of conformity scores we develop11

improve significantly on the state of the art. We cannot put it better than R2: “although it [the use of quantile regression]12

appears to be a simple modification from hindsight, it is non-trivial from foresight because quantile based methods13

is highly adaptive to the heteroscedasticity, or more generally distributional heterogeneity, which is ubiquitous in14

real-world applications.” This is the main point of our paper. Conformal inference is a beautiful idea but what if it had15

been implemented with subpar tools all along? In particular, why estimate the mean if the goal is to estimate quantiles?16

To understand the limitations of classical conformal prediction, consider heteroscedastic data with outliers. Suppose we17

have complete knowledge of the conditional distribution Y |X , so that no learning is required. In this idealized setting,18

the usual conformity score becomes Ri = |Yi − µ(Xi)|, where µ is the true conditional mean regression function.19

This score would never yield optimal prediction intervals on heteroscedastic data! It is optimal only in the restrictive20

setting of a location model Y = µ(X) + ε, where the noise ε follows a symmetric, unimodal density function [1].21

As for locally adaptive split conformal prediction, we argue in our paper that scaling residuals by their variance is22

also suboptimal, even if its limitations are less severe. In the present idealized setting, this method can only construct23

intervals that are adaptive to the location and local variance in Y |X . Distributional heterogeneity does not necessarily24

arise from such a location-scale family, as illustrated in our synthetic simulation (Figure 1). Furthermore, the locally25

adaptive score performs poorly on data with outliers, as confirmed by R2, who kindly guided us to design an additional26

experiment that corroborates this point.27

In the ideal setting where the conditional distribution is known, CQR would construct exact prediction intervals28

reflecting the intrinsic predictive uncertainty, while achieving any desired coverage level. To see this, recall that the29

endpoints of the CQR prediction interval would be the true lower and upper conditional quantiles, and so the correction30

termQ1−α(E, I2) would be equal to zero. This property stands in contrast to all previous conformal prediction methods,31

which have generally nonzero correction terms even in the idealized setting. (We thank R1 for raising concerns about the32

novelty of our paper and its importance; we have modified our manuscript to include this crucial discussion.) When the33

conditional distribution is unknown, our method improves accuracy. To quote R2: “[CQR] may influence the machine34

learning architecture for problems [with] continuous outcome. For instance, the last layer is typically the L2 loss, which35

gives no easy way to assess decision uncertainty with theoretical guarantee. However, replacing the last layer by pinball36

loss with two different quantiles would automatically provide an assessment of uncertainty and the conformalization37

step provides the theoretical guarantee in finite samples even in presence of arbitrary model misspecification.”38

R1 comments that the length of the prediction intervals constructed by the full conformal method is not fixed, whereas39

in split conformal it is equal to 2Q1−α(R, I2). This is true. To quote from [1], however: “for full conformal, the40

width can vary slightly as X varies, but the difference is often negligible as long as the fitting method is moderately41

stable.” We added a similar comment to our paper. That being said, the enormous computational cost of full conformal42

compared to split conformal means that any comparison between the two is of very limited practical interest.43

R1 also wonders why the criticism about the fixed-length interval does not apply to CQR, as its intervals have length44

lower bounded by 2Q1−α(E, I2), independently of Xn+1. Our Figure 1 clearly shows that the intervals constructed by45

CQR do not have fixed length. As to why, notice that the interval length for split conformal is equal to, not merely lower46

bounded by, 2Q1−α(R, I2), whereas in our case, the quantity Q1−α(E, I2) can be positive, zero, or even negative,47

depending on the calibration of the quantile regression method. When perfectly calibrated, as in the ideal setting, this48

quantity will be zero, making the lower bound trivial. We appreciate the reviewer’s suggestion to integrate the locally49

adaptive approach into our framework. However, we are doubtful that doing so would improve its performance, since,50

as R2 notes, our paper “provides extensive high-quality numerical experiments, which clearly demonstrate the superior51

performance and adaptivity of conformalized quantile regression.”52

Reviewer 3 suggests that we construct a loss function formulating CQR as an optimization problem. In fact, we use the53

pinball loss function to estimate the conditional quantiles, which can be viewed as CQR’s objective function.54
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