- 1 We thank all reviewers for their feedback. We respond to the main concerns. We will also address all the minor points
- 2 raised in the final version of the paper.
- 3 Motivation / Threat Model / Use Case (Reviewers 1, 2, 3) The main contribution of our paper is to provide a
- 4 framework that cleanly models privacy against bounded adversaries, and allows quantitative calculation of privacy
- 5 loss against particular adversarial classes. This was previously unknown (except for the special case of computationally
- 6 bounded adversaries). Quantification of privacy loss is important because it allows a systems-designer to precisely
- 7 determine the kind of privacy-accuracy tradeoff that is offered by a release.
- 8 One setting where quantifying privacy for different adversaries makes sense is when data sharing is coupled with data
- 9 usage contracts (as mentioned in Section 1 of the paper). For example, an instance of the Laplace mechanism might
- offer $\epsilon = 1$ in general but $\epsilon = 1.25$ to a certain class of adversaries. Quantifying this tradeoff allows (a) better decisions
- in cases where we expect the adversaries to be bounded in what they can do for example, automated adversaries or
- 12 adversaries under a data-usage contract and (b) better design of data-usage contracts eg, if the loss against quadratic
- functions is much higher than linear, then we can only allow for linear functions.
- 14 R3 astutely observes that problems may arise if the adversary does not obey the data usage contract, or its output is
- viewed by someone else. In this case, we will sacrifice the improved privacy guarantee, but if we use a differentially
- private mechanism, then we can fall back to the original (weaker) differential privacy guarantee that holds for all
- 17 adversaries.
- We will add this discussion to the introduction in the final version of the paper.
- Reviewer 1 "The only thing missing from the paper is a better sense of how adversary types can be linked to function classes, perhaps through an extensive example."
- 21 A concrete example is an excellent suggestion; we will do this in the final version.
- "Why couldn't the adversary just use simulation and rely on ${\cal H}$ instead? Why wouldn't the adversary have access to the
- output of the cb-DP algorithm?"
- To clarify, the adversary here can only compute certain functions (those in \mathcal{H}) on the output of the capacity bounded
- 25 differential privacy algorithm. The above discussion about data usage agreements is one setting where adversaries of
- 26 this form arise.
- 27 We will correct the error pointed out in the Appendix as well as add theorem numbers to our references where applicable.
- Reviewer 2 "At this point it feels that the risks (in terms of possible privacy breach) of using this relaxation outweighs the potential benefits."
- We emphasize that the main contribution of the paper is quantifying the risk for capacity bounded adversaries. As
- discussed above, under a mechanism (like a data usage agreement), one can get adversaries to only postprocess the
- outputs of a mechanism using restricted function classes to get a tighter privacy analysis. If the adversary deviates, one
- could still fallback to the general (and weaker) DP guarantee.
- Reviewer 3 "The main problem here is that the definition as the submission correctly observes is not closed under
- post-processing. In other words, once the (ML or contractually bound) adversary does its computation, _its_ output can
- be observed and processed by someone else, without restrictions imposed by the definition."
- Data use agreements usually restrict the outright release of data or its derivatives. This would ensure that the output of a
- capacity bounded DP algorithm is not released to an adversary of a different class. That said, if this does happen in
- 39 violation of the data use agreement, we can still fall back on the (weaker) DP guarantee that applies to all adversaries.
- We will qualify our statement on the Groce et. al. paper in Section 1, as was suggested. We will also add the suggested
- 41 details to the definitions section.