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We thank the reviewers for carefully reading the manuscript and providing us with valuable feedback. While the essence
of our results seem to be well understood by the reviewers, we address below some specific points that they have raised.

Note that from our perspective the BC-RED algorithm, Theorem 1, Theorem 2, and the numerical experiments are equally
important as contributions, providing new insights into using denoisers (including those based on deep neural nets) as
priors within block-coordinate estimation. Our manuscript shows that all these ingredients combine synergistically in a
novel methodology that is both theoretically rigorous and practically relevant. We made effort to give credit to all the
prior work on the topic and will include citations to all publications mentioned by the reviewers.

Reviewer 1. As you correctly inferred, geometric convergence can be obtained by strengthening Assumption 2 to say
that g is strongly convex. This was omitted from the submitted manuscript due to space. In the context of BC-RED,
separable regularizers correspond to separable denoisers, such as pixel-wise or patch-wise denoisers. Figure 1 (Left)
shows that while DnCNN™ is not fully separable, it only requires 5 px padding for optimal performance. We will fix
both typos you mention in the revision. We would like to highlight two original contributions in the manuscript, namely
the infusion of deep neural nets into block-coordinate algorithms in a mathematically rigorous way and establishing
an explicit connection between the RED framework and nonsmooth optimization. The revised manuscript will better
explain that the traditional analysis from nonsmooth optimization does not simply carry over to Theorem 1, since we
assume no objective function (to accommodate deep neural net denoisers, not associated with any regularizer h).

Reviewer 2. Note that Assumption 4 holds for a large number of popular regularizers, including /-, /1, and TV penalties.
Theorem 1 implies that E[||G(z*)||?] is summable and E[||G(x*)||] — 0, which is the best we can establish for a
convex g and a generic denoiser. A stronger result — convergence of the iterates to a unique point * € zer(G) — can be
established when g is strongly convex. We will clarify L220 to make this more precise. We will clarify L175 to say
that we consider a generic proximal operator. No constants blow up: it is possible to progressively take 7 — oo, as in
eq. (13), but this leads to a progressive reduction in the step-size -y (see L187). Instead, we empirically found the benefit
of tuning 7 as a free parameter. We would have loved to be more specific in citations and have a more detailed literature
review, but we were dealing with a significant space shortage (we are fully using all the 8-pages allowed by NeurIPS).
However, we will certainly include citations to both Danielyan and Tseng in the manuscript. We will clarify that in
general PnP and RED are nof minimizing any functional. We hope that our (possibly suboptimal) notation for U and
our schematic illustrations won’t preclude the reviewer from considering other merits of our manuscript. We will clarify
L17 to say that the true prior might be unknown for certain signals, such as natural images. We will release our code
with its documentation to GitHub after the reviews; Dropbox was used as a mechanism for anonymous code sharing.

Reviewer 3. While [21] is a great work, it neither analyzes block-coordinate algorithms nor provides an explicit
convergence rate. The latter is important for precisely quantifying the computational complexity of BC-RED. The
conceptual leap from the traditional RED to our analysis of BC-RED is comparable to the leap from the traditional
gradient descent to the Nesterov’s analysis of coordinate descent methods [23], which is certainly not minor. We share
your enthusiasm for Theorem 2, but it will be challenging to find more space without significant revisions. We provide
some time comparisons in Figure 1 (Center and Right), showing that on our machine (see Section F in the supplement)
an efficient implementation of BC-RED can be much faster than RED, where the speed depends on the structure of the
measurement matrix and the denoiser. However, the speed is only one of many potential advantages of BC-RED, as it
can offer scalability through other mechanisms, such as effective memory management and distributed implementation.
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Figure 1: Left: The performance of BC-RED for the Random matrix with 40 dB noise and patch-wise DnCNN*, where
the denoiser input includes an additional padding around the patch, while the output has the size of the patch. The
lower SNR for 0 px suggests non-separability of DnCNN™; yet, a small 5 px padding is sufficient for matching the
performance of the full-image DnCNN*. Center and Right: The convergence speed of BC-RED under patch-wise
DnCNN* with 40 px padding for the same setting as Left. Distance to zer(G) — corresponding to the full-image denoiser
—and SNR are plotted against time. As a reference, we provide the convergence of RED using the full-image DnCNN*
and BM3D denoisers. Since the patch-wise denoiser only approximates the full-image denoiser, the final accuracy of
BC-RED to zer(G) is 1.92 x 10~". Yet, BC-RED still matches the SNR performance of the full-gradient RED and
does this substantially faster due to its better convergence rate and reduced denoising complexity (due to patch-wise
denoising). Note also the slow convergence of RED using the full-image BM3D, due to high complexity of denoising.



