
We thank the reviewers for the time they spent evaluating our manuscript and for their valuable comments. All the1

answers given in this document will be incorporated in the manuscript and/or in its appendix. In the following we took2

the liberty to group and reword some of the reviewers comment (in blue italic) to save space.3

General answer on the usefulness of gradient descent, its theoretical guarantees, and its scalability.4

The proposed gradient-based approach has two important advantages: (i) it is extremely flexible, allowing us to easily5

incorporate new cost terms; (ii) it provides a generic "ultrametric layer" that can be used to build end-to-end learning6

pipelines, for example with methods for graph embedding in hyperbolic spaces (Nickel and Kiela, NeurIPS 2017).7

We agree that having theoretical guarantees would be a big plus. However, we know, in particular with recent advances8

on deep neural networks, that obtaining any insight toward theoretical guarantees with gradient descent algorithms9

applied to nonconvex problems is extremely challenging, and we hope to be able to get theoretical results in future10

works. In this regard, apart from what mentioned in the manuscript, an interesting line of research arises from recent11

works on the implicit bias of gradient descent by Soudry et al. (ICLR 2018) and Ji et al. (COLT 2019).12

As for scalability, the bottleneck of our method is the single-linkage algorithm. One way to address this issue (up to13

a certain limit) would be to use recent progresses on parallel single-linkage algorithms (out-of-core algorithms can14

process billions of vertices). Nonetheless, true scalability will require to adapt mini-batch gradient descent to ultrametric15

fitting, which is a topic that we are currently working on. Similarly to Monath et al. (NeurIPS 2017), our idea consists16

of only updating sub-trees at each iteration. However, this leads to a biased approximation of the gradient, that we plan17

to correct by maintaining an exponentially-weighted average of the Jacobian matrix, like in Pfau et al. (ICLR 2019).18

Given the significant body of additional material, we feel that this topic is best left to a future publication.19

R1: Experiments on larger datasets for comparison of hierarchical clustering quality. As scalable solutions for dealing20

with massive datasets require nontrivial extensions, we believe that they deserve a separate publication.21

R2: Line 8,56,70,93: I would suggest a more cautious usage of the word "equivalent". Your are right that the transformed22

problem is not strictly equivalent to the original one, we will thus remove the world "equivalent". Moreover, a proof of23

equivalence between ultrametric and hierarchical clustering can be found in [29, Th. 9].24

R2: A differentiation between the ultrametric d and the ultrametric u would make their different usages clearer. We25

will improve the beginning of Section 2 and its illustration in Figure 1 in order to better explain the difference and the26

importance of modeling the ultrametric du by its compact "restriction" u defined only on the edges of the graph.27

R2: Line 186 ff.: A usage of the subdominant ultrametric for the cluster-size regularization, would make the algorithms28

part more consistent with the following considerations in this paper, and One more sentence to the relationship between29

(13) and (17) would make the transition with the use of the subdominant ultrametric compared to before clearer. We30

will emphasize how Eq (14) can be used to rewrite cluster size regularization and Dasgupta’s cost to suit the proposed31

optimization framework. In particular, we will give the full derivation of Eq (13) to Eq (17) in the appendix.32

R2: How is the weighting λ of the regularization term chosen? Were also other values used? We tried several values on33

an exponential scale and we observed that the constant value reported in the article was sufficient for all the experiments.34

R2: Line 149: JDasgupta calculated with the Heaviside function H or the sigmoid function? and Equation (17): what35

is `? A continuous approximation of the Heaviside function is mandatory for Dasgupta’s cost, as the cluster sizes is the36

only element of the cost that depends of the ultrametric u. With the Heaviside function, the derivative of Dasgupta’s37

cost will be null almost everywhere. The undefined symbol ` in (17) was indeed meant to refer to the sigmoid function.38

R2: Notations and clarifications. 1) Line 128: labels Cv , why C is used? C already used for cycles in G. 2) Algorithm39

2 Title: defined in (14) instead of (5)?, 3) Line 144: x ∈ n. x is a node and n also? 4) Line 149: Was the Dasgupta cost40

function for the visualization in Figure 2 also combined with a regularization as in the experimental part? 1) We will41

replace Cv with Lv (label of v) to avoid any confusion. 2) Yes, the algorithm computes the min-max operator defined42

in (5) with the formulation given in (14). 3) You are right, nodes are subsets of V , so x ∈ V is an element of a node n,43

and the singleton {x} is a leaf node. 4) No, Dasgupta’s cost was used without regularization in all the toy examples.44

R3: I think that it would be good to more clearly state the process (and its complexity) of going from the ultrametric45

fit to data to a dendrogram. and Clarifications of how a hierarchical clustering is extracted from a fit ultrametric.46

The dendrogram associated to a given ultrametric is a byproduct of Algorithm 2 (tree computed on line 2). The final47

dendrogram is thus obtained for free at the end of Algorithm 1, when computing the min-max operator on the estimated48

edge weights. Thresholding the dendogram node altitudes yields a flat clustering. In practice, one can efficiently find49

the threshold that would produce a given number of clusters by browsing the dendrogram from the root to the leaves.50

R3: Experiments that compare the optimization of hierarchical clustering methods
wrt Dasgupta’s cost. The figure beside compares Dasgupta’s cost obtained with
Linkage++ [11] and the proposed relaxed cost function JDasgupta on 50 random
graphs with cosine similarities (blobs-like structure with 1024 points organized
in 16 clusters). These preliminary results shows that the proposed relaxation is
likely close to the exact Dasgupta’s cost. Note that this is consistent with Fig 1(a)
in [11]. We plan to further explore this question with real data in the final version.

Experience number
0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

N
o
rm

a
liz

e
d
 c

o
st

linkage++
JDasgupta

51


