
We thank the reviewers for their comments. We will fix the typos in the final version.1

Comparison with [34]: In general solving the safe RL problem is a harder problem. In order to apply to Reinforce-2

ment learning, we need to verify that the Lipschitz condition is satisfied, and also the policy gradient has to be estimated3

(instead of directly evaluated as in a standard optimization problem). The usage of Actor-Critic algorithm reduces the4

variance of the sampling a lot (see next paragraph), which is unique to Reinforcement learning.5

Actor-Critic improves performance and reduces variance: In general, an actor-critic method helps reduce variance6

by using a value function instead of Monte-Carlo sampling. Specifically, in Algorithm 1 we need to obtain a sample7

trajectory and calculate J∗(θ) and ∇θJ∗(θ) by Monte-Carlo sampling. This step has a high variance since we need8

to sample a potentially long trajectory and sum up a lot of random rewards. In contrast, in Algorithm 2, this step is9

replaced by a value function V Jw (s), which reduces the variance. We will clarify this in the final version.10

About safe exploration: Our algorithm does not guarantee safe exploration during the training phase. Ensuring11

safety during learning is a more challenging problem. Sometimes even finding a feasible point is not straightforward,12

otherwise Assumption 3 is not necessary. We will clarify this in final version, and leave safety training to future work.13

Reviewer 1: Experiments: we run additional multiple trials to compare our method with Lagrangian method. The14

following table reports the averaged results with mean and standard deviation. In columns 2 and 3, we compare the15

minimum value and number of iterations to achieve it. Since for both the methods, the constraint values oscillate above16

and below D0 (as shown in Figure 2cd), we also consider an approximate version, where we are satisfied with the result17

if the objective value exceeds less than 0.2% of the minimum value. Columns 4, 5 of the table report the averaged18

results for this approximate version. We can see that both methods achieve similar minimum values, but ours requires19

less number of policy updates, for both minimum and approximate minimum version. We will include this experiment20

result, and move all the experiment parts to the main text in the final version, since we have an additional page.21

minimum value # iterations approximate minimum value approximate # iterations
Our method 30.689 ± 0.114 2001 ± 1172 30.694 ± 0.114 604.3 ± 722.4
Lagrangian 30.693 ± 0.113 7492 ± 1780 30.699 ± 0.113 5464 ± 2116

Other comments: (i). Line 201: yes, it should be “and their derivatives are". (ii). Figure 1a/b and Figure 2a/b are two22

realizations under the same setting. It is safe to ignore Figure 1a/b. (iii). Note that we are dealing with nonconvex23

optimization with a nonconvex constraint. When adding random noise to the iterates, we could escape saddle points24

and achieve a second-order stationary point. (iv). Line 152 closed form: Solving (9) is effectively finding a minimum25

value of D
(k)

(θ), and α = minθD
(k)

(θ)−D0. Looking at (6) and (8), D
(k)

(θ) is quadratic and decomposable to each26

component of θ. Therefore it is minimizing several quadratic functions, and we have closed form solution. (v). Section27

5 provides an example of concrete application of our approach. The settings are used in experiments. (vi). To verify28

the constraint is satisfied, we could use Monte-Carlo sampling which could be computationally heavy. (vii). Even for29

simple problems, modeling the constraints as negative rewards will lead to very conservative or risky behavior. See30

[Undurti, Aditya. Planning under uncertainty and constraints for teams of autonomous agents. 2011]. (viii). Intuition31

for the proof: we first show that the surrogate functions converge (Line 218), and then show that the iterates converge to32

feasible region (Line 545). Using Slater’s condition completes the proof.33

As defined in Section 5, LQR is a control problem, and hence naturally fits into RL. Standard LQR has closed form34

solution. One research direction is on algorithm part, to modify the problem so that it no longer has a closed form35

solution. Then RL algorithm is useful to solve this modified problem, for example in this paper with safety constraint.36

Another is to understand the convergence of RL algorithms on LQR, see [22] for policy gradient, and [7] for actor-critic.37

Reviewer 2: (i). L119: we will provide more intuitions and references on the surrogate functions. (ii). L137: the38

definition and reference of policy gradient algorithm is given in L92-93 in background section. We will provide a39

reference to equation (3) here in the final version. (iii). In (5) and (6), τ can be any positive constant and it does not40

affect the theoretical convergence. (iv). Expression for the Jtruncate: if γ is close to 1, the random variable T would be41

large. Therefore the summation of the reward
∑T
t=0 r(st, at) would be large. The term (1− γ) is like a normalizer.42

The intuition is that, if γ is close to 1, then future rewards are important so we need a large T . This is captured by the43

definition of T in L172. (v). Experiments: we will release codes on github and evaluate on other general set of problem44

in the final version. The paper on cross entropy method [59] does not have codes so we only compare with the standard45

(and easy to implemented) Lagrangian method.46

Assumption 3 is indeed a relatively strong assumption. As discussed in line 222, it is not necessary if we initialize47

with a feasible point. Moreover, if (in practice) we reach a feasible point in the iterates, then we could view it as an48

initializer as again Assumption 3 is not necessary. If we could not find a feasible point, then the iterates may converge49

to an infeasible stationary point of (12). As far as we know, without Assumption 3 we can not rule out this case. In50

practice, we could initialize with multiple start points, and the convergence is then guaranteed as long as we reach a51

single feasible point for one of these iterates. For our experiments on LQR, for every single replicate, we could reach a52

feasible point, and therefore Assumption 3 is not necessary.53


