- ¹ First of all, we would like to thank you all for your time and thoughtful comments on our manuscript.
- 2 Since our submission to NeurIPS, we continued to develop our method and managed to further improve our results.
- 3 Initially, we were suspicious whether greedy layer-wise training could indeed match end-to-end trained models in
- ⁴ performance, but conducting our experiments repeatedly yields consistent performance. We are now in the process of
- 5 extracting confidence bounds and releasing our code base in order to allow the community to scrutinize our findings.
- 6 Reviewer 1 Thank you very much for your review and the positive feedback on our method.
- 7 We appreciate your feedback to make the manuscript more self-contained and to include a more in-depth review of
- 8 the precise data generation process. We will incorporate this by providing more details on the dataset that we used in
- 9 our audio experiments, more specifically the phone labels that are not part of the original Librispeech dataset. These
- ¹⁰ were provided by Oord et al. (2018) who obtained them by force-aligning phone sequences using the Kaldi toolkit
- 11 (Povey et al., 2011) and pre-trained models on Librispeech (Panayotov, 2014). We will add this clarification in our final 12 manuscript.
- ¹³ Your observation that the similarity loss of Nøkland and Eidnes (2019) has similarities to InfoNCE is very interesting
- and might path the way for future research on layer-wise training. As such we will include this in our discussion of
 their work.
- ¹⁶ There are certainly more points to discuss on whether and how the brain backpropagates information. We are happy to
- ¹⁷ use the additional space of the final manuscript to provide a more in-depth discussion on this topic, including more
- recent theories on how neural circuits in the brain could approximate the error back-propagation algorithm (Whittington
 and Bogacz, 2019).
- 20 We agree that including error margins on our accuracy results can validate the stability of the training and significance
- of our results. We are actively working to add them to our manuscript.
- Reviewer 2 Thank you very much for your review.
- We agree that the experimental setup of the ablation studies could be clarified. In the following, we provide a more thorough description which we will also incorporate in our final manuscript:
- In the forward pass, the output c_t for time-step t of the autoregressive module g_{ar} is generated by taking into account
- the hidden state of the previous time-step h_{t-1} , as well as the current input z_t , i.e. $c_t = g_{ar}(z_t, h_{t-1})$ (omitting
- m the module-index m here for brevity). For the backward pass in the standard GIM model, we block the flow of
- $_{28}$ gradients to the previous module. We can express this using the gradient blocking operator as defined in the draft
- (GradientBlock $(x) \triangleq x, \nabla$ GradientBlock $(x) \triangleq 0$), such that $c_t = g_{ar}$ (GradientBlock $(z_t), h_{t-1}$). In the ablation study in which we remove backpropagation through time ("GIM without BPTT"), we additionally block the flow of
- study in which we remove backpropagation through time ("GIM without BPTT"), we additionally block the flow of gradients between time-steps, such that the gradients derived from the loss at time-step t do not influence the calculation
- gradients between time steps, such that the gradients derived from the loss at time step t to not influence the calculation of the hidden state of the previous time-step h_{t-1} . Thus, $c_t = g_{ar}$ (GradientBlock (z_t) , GradientBlock (h_{t-1})). In
- both of these models, we train the linear classifier on top of the representation c_t for the downstream tasks. When we
- remove the autoregressive module entirely ("GIM without g_{ar} "), the linear classifier is applied on the representation
- $_{35}$ created by the last convolutional module (i.e. z_t).
- **Reviewer 3** Thank you for your feedback.
- Since no points for improvements were brought up, we focused our discussion on the points raised by reviewers 1 and 2
 instead.

39 References

- 40 A. v. d. Oord, Y. Li, and O. Vinyals, "Representation learning with contrastive predictive coding," *arXiv preprint* 41 *arXiv:1807.03748*, 2018.
- D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz
 et al., "The kaldi speech recognition toolkit," in *IEEE 2011 workshop on automatic speech recognition and understanding*, no. CONF. IEEE Signal Processing Society, 2011.
- V. Panayotov, "Kaldi pretrained model on LibriSpeech SAT and DNN," http://www.kaldi-asr.org/downloads/build/6/
 trunk/egs/librispeech/, 2014, [Online; accessed 29-July-2019].
- A. Nøkland and L. H. Eidnes, "Training neural networks with local error signals," in *Proceedings of the 36th Interna- tional Conference on Machine Learning*, 2019.
- J. C. Whittington and R. Bogacz, "Theories of error back-propagation in the brain," *Trends in cognitive sciences*, 2019.