
Requested Additional Results.1

PoseTrack17 Results on Test Set (R2). We evaluate our model on the PoseTrack17 test set (using our spatiotemporal2

pose aggregation scheme) and obtain 77.94 mAP, ranking first on the PoseTrack17 leaderboard. We will add these3

results to our final paper. We will also update Table 2 with missing entries from the leaderboard. We will cite the4

missing papers and add them to our related work discussion.5

PoseTrack18 Results (R2). We also evaluate our model on the PoseTrack18 dataset. Our spatiotemporal pose6

aggregation scheme yields 80.1 and 78.0 mAP on the PoseTrack18 validation and test sets, respectively, ranking first7

among entries that use only PoseTrack and COCO data, and second overall. We will include these results as well.8

Ablation Study on Dilated Convolution (R1, R2, R3). Here we study the effect of different levels of dilated9

convolutions in our PoseWarper architecture. We evaluate all these variants on the task of video pose propagation. First,10

we report that removing dilated convolution blocks from the original architecture reduces the accuracy from 88.7 mAP11

to 87.2 mAP. We also note that a network with a single dilated convolution (using a dilation rate of 3) also yields 87.212

mAP. Adding a second dilated convolution level (using dilation rates of 3, 6) improves the accuracy to 88.0. Three13

dilation levels (with dilation rates of 3, 6, 12) yield a mAP of 88.4 and four levels (dilation rates of 3, 6, 12, 18) give14

a mAP of 88.6. A network with 5 dilated convolution levels (Fig. 2 in the original draft) yields 88.7 mAP. Adding15

more dilated convolutions does not improve the performance further. Additionally, we also experimented with two16

networks that use dilation rates of 1, 2, 3, 4, 5, and 4, 8, 16, 24, 32, and report that such models yield mAPs of 88.6 and17

88.5, respectively, which are slightly lower. We will add this ablation study to our final paper.18

Requested Clarifications.19

Spatiotemporal Pose Aggregation. (R1) We chose to average the warped heatmaps from neighboring frames during20

spatiotemporal pose aggregation, as we discovered it to be a simple yet effective scheme.21

Warping Heatmaps (R1). The offsets are used to warp the pose heatmaps. We predict c⇥ kh ⇥ kw ⇥ 2 offset channels22

(i.e., (x, y) displacements) for every pixel where c is the number of joints, and kh, kw are the deformable convolution23

kernel height and width respectively (see L271-273). In our case, c = 17, and kh = kw = 3, which means that we24

predict 153 (x, y) displacements (306 channels) for every pixel.25

Interpretability of Offsets and Comparison with FlowNet2 (R1). We agree with R1 that it is difficult to understand26

what our predicted offsets encode based on their direct visualizations. However, Figure 5 reveals that different offset27

maps encode different motions and suggests that the method performs some sort of motion decomposition corresponding28

to different body parts or discriminative regions. Figure A1 of this document includes a more intuitive illustration of29

the motion encoded by PoseWarper and compares it to the optical flow computed by FlowNet2 (as requested by R1)30

for the video pose propagation task. The first frame in each 3-frame sequence illustrates a labeled reference frame at31

time t. For a cleaner visualization, we show only the “right ankle” body joint for one person, which is marked with a32

pink circle in each of the frames (please zoom in). The second frame depicts our propagated “right ankle” detection33

from the labeled frame in time t to the unlabeled frame in time t+1. The third frame shows the propagated detection34

in frame t+1 produced by the FlowNet2 baseline. This visualization and similar ones that we generated and that we35

plan to include in supplementary material, suggest that FlowNet2 struggles to accurately warp poses if 1) there is large36

motion, 2) occlusions, or 3) blurriness. In contrast, our PoseWarper handles these cases robustly, which is also indicated37

by our results in Table 1 of our submission (i.e., 88.7 vs 83.8 mAP w.r.t. FlowNet2). For the final version of our paper,38

we will add more visualizations such as the ones in Figure A1. We believe that they will provide a better qualitative39

understanding of why our method is advantageous compared to FlowNet2 (besides the quantitative benefits of lower40

computational cost and improved accuracy, which we already discussed in our submission).41

Track ID Annotations (R2). Our approach does not require track ID manual annotations or externally generated42

person tracks. We train our model to warp pose heatmaps from an unlabeled Frame B to a labeled Frame A. For each43

labeled bounding box of a person in Frame A, we crop Frame B at the same location using a bounding box that is large44

enough to include the same person even if he/she moved. During spatiotemporal pose aggregation inference, we apply45

the same scheme and use bounding boxes automatically extracted with a detector from [48] (see L163-165). We note46

that because our predicted offsets encode motion cues between Frames A and B, we can potentially leverage our offsets47

for tracking. Furthermore, as noted by R3, our proposed framework is general enough to be applied for other video48

tasks such as object detection or instance segmentation in video.49
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Figure A1: Comparing our PoseWarper and FlowNet2 for video pose propagation. Please zoom in to see the pink
circle on the right ankle. Unlike our model, FlowNet2 fails to accurately propagate poses when there is large motion,
bluriness or occlusions.


