
We appreciate the time invested in carefully reading our paper and the very helpful and detailed comments by all1

reviewers. We will address their concerns in the revised version and thank the reviewers for pointing out that: our work2

is very clearly written, structured (R1) and detailed (R2), with a clear and convenient notation and a sound math (R1),3

and provides new links between and new interpretations of well-known graph-based procedures (R1, R2, R3).4

The numbered citations will refer to the references of the paper.5

Reproducibility (R2): The Random Walker and Watershed algorithms are well-known and implemented, e.g., in scikit-6

image’s segmentation.random_walker and vigra’s analysis.watersheds. Based on R2’s comment, we will7

make the code and the edge-weights used for our illustrative computations available on GitHub for easy reproducibility.8

Connection to machine learning (R2): In lines 11ff of the paper we state that seeded segmentation is essentially9

the same as graph-based semi-supervised learning, thus presenting our work as an instance of transductive learning.10

Given a limited number of labelled observations, the categories of the unlabelled data are inferred from their relation11

to the labelled data. We also cite machine learning literature that uses the Random Walker algorithm (and thus our12

Probabilistic Watershed) under different names in lines 49f [5, 40, 41] or combines it with deep leaning [9, 37]. We are13

happy to elaborate these connections further in the revised version of the paper.14

Empirical support (R3): Indeed the focus of our paper is conceptual and theoretical, as pointed out in the introduction15

(line 45). We have rigorously proven the equivalence of the Probabilistic Watershed to the Random Walker (theorem16

4.1) and that a limit case calculates the potentials of the Power Watershed (theorem 5.1). The empirical effectiveness of17

the Random Walker and the Power Watershed algorithm and thus of the equivalent Probabilistic Watershed has been18

thoroughly established when these algorithms were introduced [13, 23, 41] and when they were subsequently applied.19

For instance, the Random Walker has been recently applied in the references below and in [9, 37]. In view of this vast20

empirical support, we decided not to add further experiments but to concentrate on deepening the theoretical insight21

in (connections between) different graph-based seeded segmentation algorithms, thus placing our contribution in the22

"Theory" subject area of NeurIPS 2019.23

Potential practical implications (R1 + R3): Although practical implications were not the focus of our work, the24

improved understanding of the aforementioned graph-based seeded segmentation algorithms and the introduced25

techniques may lead to new practical algorithms. An example of a new point of view provided by our work is the26

entropy regularised spanning forest sampling. It explains the interpolation between a Voronoi tessellation, the Random27

Walker and the Watershed algorithm discussed in [13] by varying the temperature of the Gibbs-distribution over28

all spanning forests. We have included an illustration of the temperature’s effect in Figure 1, which we will also29

add to the appendix of the paper. Another idea inspired by our work would be to apply the Probabilistic Watershed30

framework to directed graphs, where one would sample directed spanning forests with the seeds as sinks to segment the31

unlabelled nodes. This might lead to a new practical algorithm for semi-supervised learning on directed graphs such as32

social/citation or Web networks and could be related to directed random walks.33
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Figure 1: Effect of the inverse temperature µ on Probabilistic Watershed solutions. 1a shows a graph with 4 seeds
and edge costs, c(e). All paths from the query node q to a seed si have the same cost, (only indicated once per seed).
1b - 1d show the Probabilistic Watershed’s segmentation for edge weights exp(−µ c(e)). As µ grows, q’s assignment
changes from a weight-independent one over two Random Walker assignments to the Watershed assignment.
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