
We thank the reviewers for their comments which we address in turn below.1

Reviewer 1: We chose success probability 0.9 only for convenience of presentation. We can boost the success2

probability to 1− δ for any δ > 0 in a standard way. Namely, we run our FTLS algorithm O(log(1/δ)) times where in3

each run we use independent randomness, and choose the solution found with the smallest cost. Note that for any fixed4

output X , the cost ‖[Ā, ĀX]− [A,B]‖F can be efficiently approximated. To see this, let S be a CountSketch matrix5

with O(ε−2) rows. Then ‖S[Ā, ĀX] − S[A,B]‖F = (1 ± ε)‖[Ā, ĀX] − [A,B]‖F with probability 9/10 (see, for6

example Lemma 40 of the arXiv version of Clarkson and Woodruff “Low Rank Approximation and Regression in Input7

Sparsity Time”). We can compute ‖S[Ā, ĀX]− S[A,B]‖F in time O(d · poly(n/ε)), and applying S can be done in8

nnz(A) + nnz(B) time. We can then amplify the success probability by taking O(log(1/δ)) independent estimates and9

taking the median of the estimates. This is a (1± ε)-approximation with probability at least 1−O(δ/ log(1/δ)). We run10

our FTLS algorithmO(log(1/δ)) times, obtaining outputsX1, . . . , XO(log(1/δ)) and for each apply the method above to11

estimate its cost. Since for each Xi our estimate to the cost is within 1± ε with probability at least 1−O(δ/(log(1/δ)),12

by a union bound the estimates for all Xi are within 1± ε with probability at least 1− δ/2. Since also the solution13

with minimal cost is a 1± ε approximation with probability at least 1− δ/2, by a union bound we can achieve 1− δ14

probability with running time Õ(log2(1/δ)) · (nnz(A) + nnz(B) + d · poly(n/ε))). We will include this in our revision.15

Thank you for suggesting a notation table. We will put the following table in the revised version.

Name Value Comment Name Value Comment
s1 O(n/ε) #rows in S1 S1 matrix of size s1 ×m CountSketch matrix
d1 Õ(n/ε) #columns in D1 D1 matrix of size n× d1 Leverage score sampling matrix (on the right)
d2 Õ(n/ε) #rows in D2 D2 matrix of size d2 ×m Leverage score sampling matrix
s2 O(n/ε) #rows in S2 S2 matrix of size s2 ×m CountSketch matrix for fast regression

Z2 matrix of size s1 × d1 Low rank approximation solution matrix

16

We will remove Theorem 1 as a preliminary theorem, as suggested by the reviewer. We also think it is a good idea to17

add concluding remarks, as well as release our Matlab code for the experiments. We will consistently use Õ(·). Finally,18

the 4 TB RAM is a typo. Thank you for pointing these out.19

Reviewer 2: We would like to address your concerns as follows. (1) Claim 3.1 has a typo. Thank you for catching this.20

(2) Line 265 has a typo. The rank should be 2. (3) We reported the running time in the current form so that people21

could see the trend of the running time as a function of the input size. We think it made sense to report the running22

time as a ratio. (4) We will change section 4.1 accordingly so that all the references are in the main body. (5) For23

the UCI datasets, they were originally used for testing linear regression, namely they consist of matrices A,B and24

the target is to find x so that ‖Ax − B‖2 is minimized. We simply view A,B as the input to the TLS problem and25

run our algorithm. We will explain this more clearly in the revision. (6) We will report the standard deviations for26

experiments conducted for Fig 1 and Table 1. Due to space limits, here we provide the standard deviation in Table 1(b)27

within 100 runs: the std for cost is [0, 0, 0.0026374, 0.0042907, 0.0083246, 0.029893], and the std for running time is28

[0.045575, 0.00020744, 0.008662, 0.010801, 0.0041755, 0.0026477].29

Reviewer 3: Thank you for identifying our contributions. We want to stress that TLS is quite different from Ordinary30

Least Squares because the two problems can have quite different costs, as explained in Section 4.1 and Appendix H.31

Also, as you mention, using sketching to solve linear regression has been extensively studied, but due to the complex32

structure of TLS, naïvely migrating the sketching algorithms for linear regression does not work for TLS. Indeed, for33

the least squares problem minx ‖Ax− b‖2, we can simply choose a suitable sketching matrix S and solve a smaller34

sized problem minx ‖SAx − Sb‖2. However, to achieve input sparsity running time for TLS, we need to carefully35

chain a sequence of sketching matrices together.36

Other comments:37

• We will improve the figures in the revision. We will include labels on the axes. In Figure 1, the 2nd and 4th38

graphs are for costs, and they are presented as the ratio: cost_tls/cost_alg.39

• We will change Section 4.1 accordingly so that all references are in the main body.40

• We will add experiments on larger data sets. We have tested our algorithm on a 50, 000 × 20 matrix with41

the same setting of parameters as in Section 4.2, and it runs fairly quickly - [434.26, 174.13, 43.128, 10.581]42

seconds for [0.9, 0.6, 0.3, 0.1]-FTLS respectively. The main bottleneck for larger datasets is simply that the43

baseline computation of TLS takes too much time. We will also conduct experiments on larger UCI datasets.44


