
Reviewer 1: - Unfair Experiments: There has been a misunderstanding! We use only one measurement (one partition1

with no overlap for CS) at test time. The two measurements (two overlapping partitions for CS) are used only for2

training. The underlying network is setup to estimate the image from a single measurement. During training, we apply3

the network separately to the two measurements to get two estimates of each training image, and use these estimates4

jointly to compute our losses. But for evaluation on the test set, our network is given only one measurement as input.5

Thus, all methods are provided identical inputs (one measurement, no overlap) that matches the noted ratios for CS.6

- Other Recent Methods: We will cite & discuss these concurrent works (note they were only on arXiv until recently:7

the BASP workshop Feb’2019 for Metzler, and CVPR Jun’2019 for Zhussip). Both papers propose approaches based8

on SURE (i.e., very different from ours) for unsupervised training from single measurements. But they are specific to9

D-AMP estimation: they train denoiser networks for use in unrolled AMP iterations for CS recovery. Our method needs10

pairs of measurements, but is a more general framework that can be used to train generic neural network estimators.11

Comparisons: We can’t directly compare to Zhussip since there is no code available yet. Instead, we’ll add comparisons12

to BM3D-AMP which was their main baseline. Moreover, BM3D-AMP was also the best performing CS method in13

Metzler’s evaluation (see their Tbl.2: their proposed methods were faster but had lower avg PSNRs than BM3D-AMP).14

Below, we show results of BM3D-AMP on Set11 with a "patch-wise" evaluation from the ISTANet paper, as well as a15

"full-image" evaluation suggested by R1 (calling BM3D-AMP on the full image with measurements from all patches as16

input). We see that, even with full image restoration, BM3D-AMP performs worse than our unsupervised method by17

3.26 dB at 10% (gaps are even wider at lower rates, as also noted in the ISTANet paper). As reference, BM3D-AMP is18

better than Metzler, and worse than Zhussip by only 1-1.5 dB, in their own CS evaluations.19

Method 1% 4% 10%
BM3D-AMP Patch-wise (from ISTANet Paper) 5.21 dB 18.40 dB 22.64 dB
BM3D-AMP Full Image (our evaluation) 5.59 dB 17.18 dB 23.07 dB
Our Method (unsupervised) 17.84 dB 22.20 dB 26.33 dB

20

- Only Patch-based Restoration: Nothing in our framework restricts it to patch-based networks: the entire second half21

of our evaluation (on deblurring) is on a full-image restoration network. For CS, we chose patch-based restoration only22

to follow the protocol of the recent CVPR’18 ISTANet paper (also, patch-wise is just a experimental choice: ISTANet23

and our CS network could be easily adapted to treating the whole image as a large “patch”). For completeness, we will24

also add the full-image BM3D-AMP results above to our evaluation.25

Reviewer 2: Thanks for your positive comments! Our main results are really the comparisons between the supervised26

and unsupervised versions of the same (our) network. In terms of architecture, we actually use concatenated U-Nets27

only for CS, inspired by ISTANet+ that also concatenated two networks. We had also tried a single U-Net for CS and got28

similar gaps between unsupervised and supervised (both did slightly worse than concatenated U-Nets). For deblurring,29

we actually have a single U-Net (with a second decoder path for kernel estimation used only in blind training). Also,30

rather than claim a contribution on a specific application (where the improvements from the architecture are relatively31

minor: 0.1-0.2dB for 10% CS and deblurring), we wanted to keep the focus on our general unsupervised framework.32

Reviewer 3: Thanks for the detailed feedback! - Q matrix / swap-loss: We’ll further discuss the full-rank requirement33

of Q to give readers intuition (individual θ can be low-rank, but must be diverse in a way that Q is full-rank). With34

motion-blur, the decay is along different orientations for different kernels. And as they are thin splines, most of the35

’low-rankness’ comes from a sinc-like pattern of zeros in frequency. Orientations and zero-frequencies vary across36

kernels, making Q full-rank. We’ll add images of individual kernel and average magnitude spectra to show this.37

- Self-loss: The self-loss provides extra supervision per sample (although the swap loss is full-rank in expectation, it is38

low-rank per-sample). Note we use it in conjunction with the swap-loss, and any noise present will be independent in39

the two measurements. So for the identity case, the swap- and self-loss together will promote convergence to the mean40

of the two noisy measurements. We’ll add an ablation to Table 1 w/o self-loss: performance drops by 0.04-0.17 dB.41

- prox:θ Loss: Blind-training can indeed only be used when estimating θ is feasible. We’ll clarify this assumption in42

the revision. For deblurring, kernel estimation is roughly as hard as deblurring (early deblurring methods first estimated43

the kernel & ran non-blind deconvolution), and is often reasonably successful (with supervised training).44

- Experiments: Face: Class-specific deblurring (for faces, text, etc.) is a popular problem because it can perform45

better on that class compared to generic deblurring, by relying more on class-specific image priors (with supervised46

training). Since the CS experiments were already on general images, we felt this was an interesting second evaluation for47

our unsupervised method. Noise: The gap between supervised and unsupervised indeed grows with more noise, as48

supervised benefits from always training on noise-free GT. The deblurring noise level was set by the benchmark. L149

Loss: We used L1 because it is a common choice in deblurring networks (gives sharper results). (4) doesn’t hold as is,50

but expected loss is still only minimized by an ideal estimate. CS Measure: We just use two randomly shifted partitions:51

each dividing the image into non-overlapping patches (chosen as it could be realized practically by moving the sensor).52


