
100 200 300 400
k

1.005

1.010

1.015
f(C

FI
G)
/f(

C F
IG

*)

(a) ER instance, n = 1000

500 1000 1500 2000
k

1.2

1.3

1.4

f(C
FI
G)
/f(

C F
IG

*)

(b) BA instance, n = 10000

Figure 1: Ablation study, effect of stealing behavior.

We thank all reviewers for the comprehensive feedback. In the following, we address specific concerns of each reviewer1

individually. In addition to the below items, the source code link and other minor issues pointed out by the reviewers2

will be fixed in the next version.3

Reviewer 1: There are several related works which are missing from this manuscript: . . . Thank you for bringing these4

works to our attention. We will add discussion of these works to the manuscript.5

[The algorithms of] [FMZ2019], Feldman et al. (2017), [FKK2019] could be beneficial to be compared with the6

algorithms presented in this paper. We agree that more empirical comparisons, especially with [FMZ2019], would be7

interesting. If we had been aware of this work earlier, it may have provided a better contrast than BLITS, since it has8

low query complexity as well as adaptivity.9

Reviewer 2: In the proof of Lemma 1, how is the last term in the second to last equation upper bounded by δM? All10

usage of ε in the pseudocode of FIG, ADD should be δ, which then yields the upper bound. Thank you for catching this11

typo.12

For the BLITS algorithm, why do the number of queries to f consistently decrease for larger k? BLITS works by13

guessing successively smaller values for OPT. With larger k, it is able to terminate earlier as the value of any solution it14

obtains is a lower bound on OPT.15

How much of the performance of FIG is due to the stealing trick (Appendix C)? Is the proposed algorithm still16

competitive with Gupta et al. without the stealing trick? In Fig. 1 above, we show the effect of removing the stealing17

procedure on the random graph instances evaluated in the manuscript. Let CFIG be the solution returned by FIG, and18

CFIG∗ be the solution returned by FIG with the stealing procedure removed. Fig. 1(a) shows that on the ER instance,19

the stealing procedure adds at most 1.5% to the solution value; however, on the BA instance, Fig. 1(b) shows that the20

stealing procedure contributes up to 45% increase in solution value, although this effect degrades with larger k. This21

behavior may be explained by the interlaced greedy process being forced to leave good elements out of its solution,22

which are then recovered during the stealing procedure.23

How does the algorithm perform on monotone submodular functions? If the submodular function is restricted to be24

monotone, IG obtains an approximation ratio of at least 1/2. A factor of 2 is saved from the analysis for general25

submodular, since f(O ∪A) + f(O ∪B) ≥ 2f(O) in the monotone case. It is possible a better analysis could show a26

ratio of better than 1/2. We did not evaluate empirically on monotone submodular functions.27

Reviewer 3: Are there instances where the interlacing greedy or the fast variant achieve an approximation ratio of28

exactly 1/4? In other words, is 1/4 the best approximation to hope for with this technique? Yes, the ratio 1/4 is tight29

for non-monotone submodular functions. Tight examples will be added to the manuscript showing, for each ε > 0, an30

instance Aε where InterlaceGreedy has ratio less than 1/4 + ε on Aε.31

The proofs of the algorithms are terse in a few places. . . . We agree, and we will add the details indicated, the equivalent32

definition of submodularity, and highlight the places where non-negativity is used.33

Can you comment on why might the run time be slowly increasing with k? In FIG, we terminate a greedy subroutine34

when the marginal gain falls below δM/n, which leads to the log n term in the query complexity. However, it is35

sufficient in the proof to terminate when the gain is below δM/k, which would lead to a log k term in the query36

complexity. We will update the algorithm and discussion to reflect this fact.37

