1 We thank the reviewers for insightful and constructive comments. We have submitted **code** for full reproducibility.

2 Common Questions:

³ Q1. Consistently compare with AdaBN and AutoDIAL in all the experiments.

4 A1. Besides ablation result already given in Figure 5, we show complete results in the table below. TransNorm (TN)

5 significantly improves upon AdaBN and AutoDIAL. Without exploiting the discriminative statistics of the target domain

6 at training, CDAN+AdaBN performs worse than CDAN. We will analyze why TransNorm is better than AutoDIAL.

Normalization	DANN [3]	DANN+AdaBN	DANN+AutoDIAL	DANN+TN	CDAN [17]	CDAN+AdaBN	CDAN+AutoDIAL	CDAN+TN
$A \rightarrow W$	82.0	82.4	84.8	91.8	94.1	88.8	92.3	95.7
$D \rightarrow W$	96.9	97.7	97.7	97.7	98.6	98.6	98.6	98.7
$W \rightarrow D$	99.1	99.8	100.0	100	100.0	100.0	100.0	100.0
$A \rightarrow D$	79.7	81.0	85.7	88.0	92.9	92.7	93.0	94.0
$D \rightarrow A$	68.2	67.2	63.9	68.2	71.5	70.8	71.5	73.4
$W {\rightarrow} A$	67.4	68.2	68.7	70.4	69.3	70.0	72.2	74.2
Avg	82.2	82.7	83.5	86.0	87.7	86.8	87.9	89.3

7 Q2. Why transferability α is designed in this way? Comparison with other types of transferability design.

8 A2. The domain adaptive alpha aims to highlight more transferable channels by calculating channel-wise transferability

9 α in two steps: for each channel, (a) Calculating Distance in Eq. (5) and (b) Generating Probability in Eq. (6).

10 (a) Calculating the distance only between means μ cannot capture the variance σ . While Wasserstein distance uses

11 both μ and σ , the relative impact of μ and σ are not well balanced. Our strategy calculates the distance between means

¹² normalized by variance $\mu/\sqrt{\sigma^2 + \epsilon}$, which is consistent with BatchNorm [11] and yields the best results (table below).

13 (b) Generating the distance-based probability to quantify the transferability of each channel, Softmax's *winner-takes-all*

strategy is not suitable, while Gaussian's tail is not as heavy as Student-t. Only Student-t distribution has *heavier tails* that highlight transferable channels while avoiding overly penalizing the others, supported by the results (table below).

Туре	ype Ablation Distance		Distance Type	Probability Type			e	Hand Keypoint Estimation			
Abalation	$ \alpha = 1$	μ	Wasserstein Distance	$\mu/\sqrt{\sigma^2+\epsilon}$	Softmax	Gaussian	Student	Method	PCK@0.2	PCK@0.05	
$A \rightarrow W$	94.6	95.0	94.5	95.7	94.9	94.8	95.7	JAN [19]	77.00	26.70	
$D \rightarrow W$	98.6	98.7	98.7	98.7	97.9	98.6	98.7	DANN [3]	80.10	29.61	
$W \rightarrow D$	100.0	100.0	100.0	100.0	99.8	100.0	100.0	DANN+TN	81.00	30.80	
$A \rightarrow D$	93.4	93.0	91.0	94.0	91.4	93.1	94.0	MCD [30]	80.15	30.10	
$D \rightarrow A$	71.5	72.8	72.6	73.4	69.7	72.4	73.4	MCD+AutoDIAL	80.38	30.51	
$W{\rightarrow}A$	72.9	73.7	73.6	74.2	73.2	73.0	74.2	MCD+TN ($\alpha = 1$)	80.80	31.10	
Avg	88.5	88.9	88.4	89.3	87.9	88.7	89.3	MCD+TN	82.12	32.42	

 $\overline{\mathbf{Q3.}}$ **Q3.** Why domain specific mean and variance? What the performance will be if α is set to 1.

17 A3. Result of TransNorm ($\alpha = 1$) is better than that of AutoDIAL (above table), concluding that *domain-specfic* mean

18 and variance are better than *domain-mixed* ones by AutoDIAL. AutoDIAL learns *mixing* parameter which converges to

¹⁹ $\alpha \approx 1$ (implying domain-specific) in Figure 3 (Inception-BN) of its original paper and in the figure below (ResNet-50).

20 R1/1. The performance of TransNorm when applying into other real scenarios.

²¹ We apply TransNorm to a challenging regression task: Hand Keypoint Estimation for domain adaptation. The above

table shows transfer results from CMU Panoptic Dataset to Rendered HandKeypoint Dataset (depicted in figure below).

Note that, MCD+AutoDIAL performs worse than MCD+TN ($\alpha = 1$), validating that its alpha does not work generally.

24 R4/1. Addressing domain-shift via domain specific moments is not new.

²⁵ Most existing works such as MMD [16] address domain-shift via *domain specific moments*, serving as the theoretical

foundation of our approach. We further provide an architecture perspective: A transferable normalization layer. It can

work with all deep domain adaptation methods. Further, as Reviewer #1 points that our *Domain Adaptive Alpha* is new.

R4/2. Why is exactly that gamma and beta should be domain-agnostic, but alpha should be domain specific.

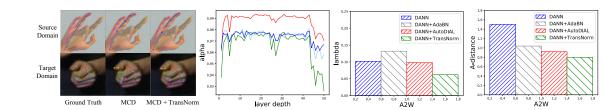
As justified in BatchNorm [11] and ResNet [8], β and γ should be shared across domains to uncover the *identity map*.

We clarify that α is also shared across domains, although it is specific to each channel to highlight transferable channels.

R4/3. Theoretical analysis to justify the specific design choices.

Ben-David *et al.* gave the learning bound of domain adaptation as $\mathcal{E}_{\mathcal{T}}(h) \leq \mathcal{E}_{\mathcal{S}}(h) + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{S},\mathcal{T}) + \lambda$. By calculating

A-Distance $d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{S},\mathcal{T})$ and λ on transfer task $A \to W$, we found that our TransNorm can achieve **a lower A-distance** and **a lower** λ and thus guarantees a lower generalization error. We will add these theoretical analyses to the revision.



34