We thank all reviewers for the helpful comments. **Figure A** and **Table A** are newly added to address the questions raised in the reviews. **Table 1, 2, 3** refer to the tables in the original paper.

Common question on comparison to other CNN optimization techniques including parameter-sparse models: In Table A, we first compare CGNet with a non-pruning based approach on AlexNet. CGNet achieves 1.7% less top-5 accuracy drop and 1.3x higher FLOP reduction compared to PerforatedCNN [7]. Channel gating works well with other non-pruning optimization such as binarization (Binary Network in Table 1) and efficient architecture (MobileNets in Table 1 and 2). CGNet also outperforms two weight sparse compression techniques. As the dense layers only account for a small fraction of the overall computation cost, the FLOP reduction of sparse weight pruning is not as impressive as the weight reduction. CGNet achieves 0.9% and 0.8% less accuracy drop and 1.8x and 1.1x higher FLOP reduction than the models in Table A (second and third rows), respectively. Moreover, we believe that channel gating is complementary to weight pruning approaches as channel gating exploits input-dependent feature sparsity.

![Figure A: Distribution of channels used across layers.](image)

Reviewer#1

Q1. Knowledge distillation (KD) on CIFAR-10: KD does not improve the model accuracy on CIFAR-10. The small difference between the ground truth label and the output from the teacher model makes the distilled loss ineffective.

Q2. Speed-up on GPU: Our current focus is to demonstrate channel gating on custom hardware, similar to Google TPUs. It is worth noting that there is a recent development on a new GPU kernel called sampled dense matrix multiplications, which can potentially be leveraged to implement the conditional path of CGNets efficiently.

Reviewer#5

Q1. Storage size: While channel gating does not reduce storage size, it can be extended to reduce off-chip memory accesses of the customized accelerator by dynamically pruning the entire output channel. We performed a preliminary study on ResNet-18 for CIFAR-10, and obtained a 46% reduction in off-chip memory accesses with 0.2% accuracy loss when we pruned channels with 10% or less salient activations.

Q2. An analysis of the distribution of channels used across layers: In Figure A, we show the percentage of channels used for each layer of ResNet-18 for CIFAR-10 (first row in Table 1). We observe that later layers use fewer channels than earlier layers and 1×1 conv layers (layer 3, 8, 13, and 18) skip more channels than 3×3 conv layers.

Reviewer#7

Q1. Rationales of using partial sum for gating decision: The partial and final sums are strongly correlated, which makes the partial sum a good estimator for the final output. The correlation coefficient is 0.86 when half of the channels are used to compute the partial sum (line 124). The fact that existing pruning approaches can effectively prune input channels and use a partial sum as the final output also suggests that the partial sum is a good approximate. Moreover, unlike other dynamic pruning approaches that embed additional fully-connected layers or even RNNs to make decisions, using the partial sum only requires minimal additional compute and hardware to support fine-grained pruning.

Q2. Channel selection in the inference time: We did not select channels manually. Both x_p and x_r are chosen statically for both training and inference. The basic solution (first row in Table 3) simply uses the first χ fraction of channels as x_p. The channels in the base path which is always taken will be “favored” during training and naturally become more important than those in the conditional path. Alternatively, we propose channel grouping and shuffling to "equalize" the importance of each channel. Channel grouping divides the input and output features into the same number of groups along the channel dimension. Then, for the i-th output group, we choose the i-th input group as x_p and rest of the input groups as x_r statically, which makes base path an ordinary grouped convolution. As a result, each channel is selected as x_p and x_r with the same frequency. Our empirical result shows that CGNet with channel grouping achieves 0.9% higher top-1 accuracy and 20% higher FLOP reduction than the counterpart without grouping.

Q3. Gate function with channel shuffling: The gate function is an element-wise operation which is applied to the partial sum. Channel shuffling operates on the final output after finishing the base and conditional paths. The two functions operate on different inputs with no interference.

Q4. Trained model and inference code: We made a C++ implementation and pretrained models of both baseline and CGNet inference available in an anonymous git repository. This implementation is unoptimized and only meant to demonstrate the idea. We are also cleaning up the code of the ASIC implementation and will make it open source soon.

Table A: Comparisons of accuracy drop and FLOP reduction of the pruned models on AlexNet for ImageNet.

<table>
<thead>
<tr>
<th>Model</th>
<th>Top-1 & Top-5 Error Baseline (%)</th>
<th>Top-1 & Top-5 Accu. Drop (%)</th>
<th>FLOP Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Figurnov et al. (NIPS’16) [7]</td>
<td>19.6</td>
<td>2.3</td>
<td>2.1x</td>
</tr>
<tr>
<td>W. Wen et al. (NIPS’16)</td>
<td>1.8</td>
<td>1.5</td>
<td>1.8x</td>
</tr>
<tr>
<td>X. Zhu et al. (IJCAI’18)</td>
<td>1.7</td>
<td>2.4</td>
<td>2.4x</td>
</tr>
<tr>
<td>CGNet</td>
<td>19.4</td>
<td>0.9</td>
<td>0.6, 2.7x</td>
</tr>
</tbody>
</table>