
We thank all the reviewers for recognizing the contribution of our work and providing their valuable comments. We address the1

questions below and will release the trained model together with code as suggested by reviewers to contribute to the community.2

Shared comment on gradient-masking. We first address this by conducting analysis following reviewers’ suggestions from3

four complementary perspectives: §1 black-box attack, §2 stronger white-box attack, §3 loss variations and §4 gradient-free4

attack. The results have verified that the improved robustness is indeed due to model improvement instead of gradient masking.5

B-Attack PDG20 PDG100 CW20 CW100
Undefended 89.0 88.7 88.9 88.8
Siamese 81.6 81.0 80.3 79.8

§1 Results under black-box attacks. For the black-box attacks, the results for6

PDG100, CW20 and CW100 in the original submission are incorrect due to our7

own fault: they are results under white-box attacks. We spot this error after sub-8

mission deadline but were unable to upload the correct version. We sincerely9

apologize for this misleading mistake and any additional efforts required from all the reviewers because of it. The correct10

black-box results are shown in the table above. This black-box results, together with the white-box results (Table 1 in the main11

paper and §2 below) suggest that gradient masking is not present in the model and the improved robustness is indeed due to the12

inherent improvement of the model itself.13

Attack Iteration PGD500 PGD1000 CW500 CW1000
min over 5 runs 66.8 66.4 59.0 58.8

max−min 0.3 0.3 0.3 0.2

§2 Results against stronger white-box attacks. We have used random starts14

for all the white-box evaluations here as well as in the main paper. Here we run15

the evaluations 5 times and report the lowest performance and (max−min) as in16

the table on the right. The accuracy of our model under very strong white-box17

attacks still outperforms Madry model (44.8/45.4) by a large margin.18
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0.76§3 Loss plots. The loss achieved with PGD adversary against our19

model increases in a fairly consistent way and plateaus rapidly for 2020

different runs with random starts, with relatively small variance (right).21

§4 Results against gradient-free attacks. We evaluated our model22

using a gradient-free black-box attack based on greedy local search,123

and result is 89.9, further assuring the absence of gradient masking.24

To Reviewer 1:25

Clarity and miscellaneous comments. i) Your understanding of Alg 1 is correct. We will add more explanations on this for clarity.26

ii) µ={ui} represents the “empirical probability vector” over the support of {xi}. They are set to be uniform as shown in the27

Sinkhorn and IPOT algorithms in supplementary file, in the absence of prior knowledge. We have used this representation to make the28

presentation general enough to incorporate prior knowledge when available. We will make this clear and mention the Sinkhorn and29

IPOT sooner in revision. iii) Label smoothing parameter 0.5 is set without hyper-parameter tuning. The investigation on smoothing30

parameter was done afterwards. We didn’t aim to achieve the best performance by hyper-parameter search but instead to show the31

general applicability of our approach under a broad range of hyper-parameter settings. iv) The gap between PGD and the CW-variant32

is smaller under stronger attacks (§2) and we attribute the remaining gap to the nature of our model, where a one step unsupervised33

adversary is used for training, different from the multi-step supervised adversary typically used in Madry model. v) “Emphasizing 134

attack iteration earlier” is a great suggestion. We will update this to avoid confusions as happened to Reviewer 2.35

Disentangling of distance and coupling. Thanks for the great suggestion. We have preliminarily investigated the disentangling36

of distance and inter-sample coupling in our main paper as you have already noticed in Sec. 5.2 using the identity matching.37

Further investigation on it (esp. the coupling) as suggested by the reviewer is interesting and we plan to work on it as our next steps.38

To Reviewer 2:39

Computational concern. The number of iterations T=1 is used for our model as mentioned in line 225. We apologize for the40

confusion and will make it more clear as also suggested by Reviewer 1. Given that T is typically set to 7 in conventional PGD41

adversarial training (e.g. Madry), our approach does not take advantage of extra computation compared to conventional PGD training.42

Random targeted baseline. We have experimented with random-targeted adversarial training as suggested by the reviewer. It43

achieves accuracy of 49.9/48.5 under PGD100/CW100 (min over 5 runs), outperformed by our model with a large margin (§2).44

Understanding of feature-scattering. Conventional adversarial examples are decision boundary oriented (Fig.2), making the45

effective manifold for training deviate from the original due to tilting and shrinking, hindering performance (line 36-52), with label46

leaking as one manifesting phenomenon. Feature scattering is inter-sample structure oriented and promotes data diversity without47

drastically altering the structure of the manifold. We plan to conduct rigorous theoretical analysis of the proposed model as next step.48

batch size 40 50 60 70 80
PDG100 58.7 62.7 68.4 68.2 68.4

To Reviewer 3:49

Batch size. As shown in the table on the right, larger batch size leads to better performance as it50

facilitates feature matching. Batch size of 60 is used for our model in the paper. Batch sizes larger51

than 60 lead to similar results. This observation is similar to other applications with embedded OT matching such as OT-GAN [48].52

53
smooth para. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Madry 44.8 46.4 46.7 46.1 46.2 46.1 45.6 46.8 47.4
Ours 35.3 56.2 59.2 61.8 58.9 68.4 70.1 71.2 69.7

Label smoothing. Label smoothing is necessary for our model. Our model (with54

1-step adversary) achieves compromised results without it, compared to standard55

PGD adversarial training (e.g. Madry) with 7-steps adversaries. This is an expected56

result as feature scattering makes the feature distributions more diffused (see Fig 1 in supplementary file), thus the corresponding57

label should ideally be “diffused” as well, in a spirit similar to mixup [70], which is achieved with label smoothing approximately in58

this work. Better schemes for joint treatment of feature and label scattering is an interesting topic and is left as our future work.59

Choice of distance. Using cosine distance avoids introducing additional tuning parameter as the features are normalized before60

computing the distance. This and the usage of logits are just design choices. Other distance measures and intermediate features can61

be used together with our framework as well. We will explain this in the updated paper. As suggested by the reviewer, we will also62

introduce label leaking earlier in the introduction for clarity. We will release our trained model together with code as suggested.63

1N. Narodytska and S. Kasiviswanathan. Simple black-box adversarial attacks on deep neural networks, CVPRW17


