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Object recognition as solved by primates

DiCarlo. Zoccolan and Rust. Neuron (2012)
Core object recognition

central ~10 deg of visual field
< 200 ms viewing duration
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Our brain is very good at core object recognition

DiCarlo. Zoccolan and Rust. Neuron (2012)

Core object recognition

central ~10 deg of visual field
< 200 ms viewing duration

» [ast
» [eels effortless

* No pre-cueing
needed

« Entertain many
objects

» Jolerant to
variation
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We think we know where the algorithms
and representations that solve core object
recognition live in the primate brain.
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We can study those representations at the '3} 7
level of neuronal spikes in a model system / :
with comparable behavioral abilities. W
We can directly compare the properties of those

representations with likely homologous regions in humans
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The ventral visual processing stream
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Our primary tools

Psychophysics Neurophysiology Computation Imaging Intervention
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Our primary question:

How do the circuits of the ventral stream transform
the pixel image to solve object recognition ?

~1 million ] T '<_10 miI_Iion
dimensional dimensional
- "D PR ’D.b %
e /'“\ -
£ —>o -b.-bm (1)} o0 (o) i
.q S L0 Rl e w8 e - - -

e —
lmage transformatton —) .
— —

pixel RGC LGN Vi Vi V4 IT



Our primary question:

How do the circuits of the ventral stream transform
the pixel image to solve object recognition ?

Why does the brain need to transform the pixel image ?
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pixel RGC LGN Vi Vi V4 IT



Common physical source (object) can

Behavioral challenge:

produce many images

“ldentity preserving image variation”

View: position, size, pose, illumination Clutter, occlusion

oG -
o o

T . O
ooies | Intraclass

Poggio. Ullman, Grossberg. Edleman. Biederman, efc
DiCarfo and Cox, TICS (2007). PFinto, Cox. and DiCario, PLoS Comp Bio (2008) e J
DiCarfo. Zoccolan and Rust. Neuron (2012} s S 1



Common physical source (object) can
produce many images

Behavioral challenge:

o O “ldentity preserving image variation”

View: position, size, pose, illumination Clutter, occlusion

~ The behavioral ability to tolerate this
is called “invariant” object recognition oaigs | Intraclass

Poggic. Uliman, Grossberg. Edleman. Biederman, etc
DiCarfo and Cox, TICS (2007), Pinto, Cox, and DiCario, PLoS Comp Bio (2008) 4
DiCarfo. Zoccolan and Rust. Neuron (2012} s S 1
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Neurons represent information

as populations of visually-
evoked “features”

"

“Joe’s” identity manifold

neuron 1

neuron S ...

neuron 4

neuron 3
neuron 2
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The computational crux of object and face recognition

A “good” set of visual features We assume: “shape” maps to
== “Explicit” representation / “identity” and “category”
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Our primary questions:

How do the circuits of the ventral stream
transform the pixel image to solve recognition ?

Why does the brain need to transform the pixel image ?
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Our primary questions:

How do the circuits of the ventral stream
transform the pixel image to solve recognition ?

Why does the brain need to transform the pixel image ?

Where is the solution located, and what form does it take?
Must be sufficient (i.e. perform).
Must quantitatively predict behavior.
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Our primary questions:

How do the circuits of the ventral stream
transform the pixel image to solve recognition ?

" Why does the brain need to transform the pixel image ?

Where is the solution located, and what form does it take?
Must be sufficient (i.e. perform).
Must quantitatively predict behavior.

Behavior
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Clue: IT conveys potentially powerful visual features

Grass, Desimone, Albright. Rolls. Tanaka, Logothetis, Miyashita, Sheinberg, Connor, ...

ms Hung*, Kreiman®, Poggio and DiCarlo, Science (2005);
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Clue: IT conveys potentially powerful visual features
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Are any IT neural codes sufficient to explain human object recognition?

The simple hypothesis:

Automatically-evoked spike rate codes distributed over non-human
primate IT cortex can fully explain human object recognition

Alternative, more complex (more attractive?) hypotheses:
IT does not directly underlie object recognition
(i.e. the key neuronal code are elsewhere in the brain, e.g. V4, PFC, LIP, ...)

Rate codes in IT are not sufficient
(e.g. coordinated spike timing patterns are the true answer)

Automatically-evoked spike patterns are not sufficient
(e.g. attentional or arousal mechanisms are critical)

Compartments within IT must be carefully considered
(e.g. any tasks related to faces are handled by the “face patch” network)

Monkey neuronal codes cannot explain human perception
(e.g. monkeys can’t “know” what a chair is; humans must be better)



Are any IT neural codes sufficient to explain human object recognition?

The simple hypothesis:

Automatically-evoked spike rate codes distributed over non-human
primate IT cortex can fully explain human object recognition

Najib Majaj Ha Hong Ethan Soloman

(postdoc) (graduate student) (undergraduate
student)



Are any IT neural codes sufficient to explain human object recognition?

The simple hypothesis:

Automatically-evoked spike rate codes distributed over non-human
primate IT cortex can fully explain human object recognition



Are any IT neural codes sufficient to explain human object recognition?

The simple hypothesis:

Automatically-evoked spike rate codes distributed over non-human
primate IT cortex can fully explain human object recognition

1. Define a set of challengin
object recoggition (O.R.Z tasks



Are any IT neural codes sufficient to explain human object recognition?

The simple hypothesis:

Automatically-evoked spike rate codes distributed over non-human
primate IT cortex can fully explain human object recognition

1. Define a set of challengin
obiect recp_g_nition (O R. 2 tasks

1

2. Measure human

behavioral performance
in all of those O.R. tasks



Are any IT neural codes sufficient to explain human object recognition?

The simple hypothesis:

Automatically-evoked spike rate codes distributed over non-human
primate IT cortex can fully explain human object recognition

1. Define a set of challengin
object recognition (O.R.) tasks

\

Same images
2 Measure human images —s 3, Measure large

behavioral performance samples of neuronal

: population spiking
in all of those O.R. tasks responses




Are any IT neural codes sufficient to explain human object recognition?

The simple hypothesis:

Automatically-evoked spike rate codes distributed over non-human
primate IT cortex can fully explain human object recognition

1. Define a set of challengin%
object recognition (O.R.) tasks

1

Same images
2. Measure human images —. 3. Measure large

behavioral performance samples of neuronal

: population spiking
in all of those O.R. tasks responses

‘-

Compute predicted O.R.
behavior from this neuronal
activity (“codes”, “decodes”)




Are any IT neural codes sufficient to explain human object recognition?

The simple hypothesis:

Automatically-evoked spike rate codes distributed over non-human
primate IT cortex can fully explain human object recognition

1. Define a set of challengin
oblect recognition _(_O.R. ) tasks

i

Same images
2. Measure human Images — 3. Measure large

behavioral performance samples of neuronal

: population spiking
in all of those O.R. tasks responses

4. Ask: can these propos&d\ Compute predicted O.R.

links quantitatively explain behavior from this neuronal
O.R. behavior ? activity (“codes”, “decodes’)



Are any IT neural codes sufficient to explain human object recognition?

The simple hypothesis:

Automatically-evoked spike rate codes distributed over non-human
primate IT cortex can fully explain human object recognition

1. Define a set of challenging
object recognition (O.R.) tasks

\

2. Measure human
behavioral performance

Same images —. 3. Measure large
samples of neuronal

population spiking
in all of those O.R. tasks \ responses
4. Ask: can these proposed Compute redicted O.R.
links quantitatively explain behavior from this neuronal
O.R. behavior ? activity (“codes”, “decodes”)

Strong correlational methods. Causality is our next step.
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The simple hypothesis:

Automatically-evoked spike rate codes distributed over non-human
primate IT cortex can fully explain human object recognition

1. Define a set of challengin
object recognition (O.R.) tasks

l

2. Measure human
behavioral performance

Same images —s. 3, Measure large
' samples of neuronal

: population spiking

in all of those O.R. tasks \ responses
4. Ask: can these proposed Compute predicted O.R.
links quantitatively explain behavior from this neuronal
O.R. behavior ? activity (“codes”, “decodes”)

Strong correlational methods. Causality is our next step.

Our goal is NOT simply “extracting information” from the brain.
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Common physical source (object) can

Behavioral challenge:

produce many images
S o Identity preserving image variation

View: position, size, pose, illumination Clutter, occlusion
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3-d object Models
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add view parameters

Position
it + Size
Pose




use ray tracing to render
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add to background




add to background




64 objects, can generate as many images as we like

full parametric control
“natural’” statistics
uncorrelated, new background every image

not fully “natural” by design -- challenging for
computer vision, doable by humans



Ob ject recoqguition 1.0 (HVYM1.0)




Ob ject recognition 1.0 (HYM1.0)




Are any IT neural codes sufficient to explain human object recognition?

1. Define a set of challengin
object recognition (O.R.) tasks



Are any IT neural codes sufficient to explain human object recognition?

1. Define a set of challengin
object recognition (O.R.) tasks

\

2. Measure human

behavioral performance
in all of those O.R. tasks



Object recoguition 1.0 (HYM1.0)

T et EN

Basic level
cat E-f":_.rl'IZ.JIIOI"‘

’ Face
% ident ﬁLatc.r“ * L identification .
'é * j"‘ L R — |
LA N
- ‘ B |

>, ==
Three 8-way classification tasks (blocked).

» - ”}

==> 24 binary discriminations, each tested at 6 levels of variation
==> (24 x 6) = 144 "tasks” (later. consider only 64 of these “tasks”)

8 deg image at center of gaze, 100 ms viewing time
(core recognition)



Objecfz recogni&ioh 1.0 n=144 tasks

Measurements of human performance (d’)

Low

Med

Amount of variation
Performance (d’)

Basic Subordinate(cars) Subordinate(faces)

n=39 humans subjects, >23,000 trials
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O‘
4
S
Q
“N..ll“
oud
s
o
0
Y
Y
$
-
Y
Y
£’
Q

Mosaic of human abili

Low

(,p) @2uewiolad

LN

o

Med

LONEBLIEA JO JUNOWIY

faces)

Subordinate(

Subordinate(cars)

Basic



Mosaic of human abili

o_-
i
s
Q
“m
oud
s
o
0
U
V
.
-
)
Y
£’
Q

This pattern of performance is
reliable across human observers.
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Individual human d’

This pattern of performance is

67 n=64tasks reliable across human observers.

face vs. not face
Ry
VW beetle vs.
.-.‘. @ other cars
2 =1 ® .. ®
L ]

0— ‘r Facel vs. other faces
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Population pooled human d’
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Basic Subordinate(cars)

Subordinate(faces)

Performance (d’)




Individual human d’

This pattern of performance is

.

071 n =064 tasks

reliable across human observers.

face vs. not face

We can use this pattern
of performance as a tool
to discover neural codes
capable of explaining

— VW beetle vs. )
r .‘. @ other cars O.R. behavior.
2 ® 0o ¢
R

0— ‘r Facel vs. other faces

| ' F v o™ ~ M "4y v AD
0 2 4 6 k§ &V £ L
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Population pooled human d’ [l

Basic Subordinate(cars) Subordinate(faces)

Performance (d’)




Individual human d’

Mosaic of human ability (d’

ObjecE recognition 1.0

.

071 n =064 tasks
face vs. not face

o* ¥V
4 -] Q .‘.
VW beetle vs.
.-.‘. @ other cars
2 ® .. ®

0— ‘r Facel vs. other faces

I
0 2 4 6
Population pooled human d’

This pattern of performance is

reliable across human observers.

We can use this pattern
of performance as a tool
to discover neural codes
capable of explaining

O.R. behavior.

3
'

The pattern of
performance is NOT
explained by artificial
visual representations
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Basic Subordinate(cars) Subordinate(faces)

Performance (d’)



Are any IT neural codes sufficient to explain human object recognition?

1. Define a set of challengin%
object recognition (O.R.) tasks

\

2. Measure human

behavioral performance
in all of those O.R. tasks



Are any IT neural codes sufficient to explain human object recognition?

1. Define a set of challenging
object recognition (O.R.) tasks

l

Same images
2. Measure human ges — 3. Measure large

behavioral performance samples of neuronal

: population spiking
in all of those O.R. tasks responses




Methods advance: large scale neuronal recording along the ventral stream




Methods advance: large scale neuronal recording along the ventral stream

Neuronal selectivity properties are very
comparable to those obtained with
single extracellular electrodes.



Methods advance: large scale neuronal recording along the ventral stream

Neuronal selectivity properties are very
comparable to those obtained with
single extracellular electrodes.

We pool data from several monkeys
to increase sampling coverage



Methods advance: large scale neuronal recording along the ventral stream

*triple array

»128-channel ' 0
® hardware ' P
= *channel | trod I

- | diroqae arrays
E E 500K harvest : ] y
S 5 * behavior /
QO 2 / F
e
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Q o -
O 5
E % *triple array (in place)
B = *128-channel
Q 500K hardware

_
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standard
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- - \-___.—\__f—'-(
A * —
2005 2007 2008 2009 201

Year




96 electrodes per array

Monkey is simply fixating.
Same retinal images as human data




Monkey is simply fixating.
Same retinal images as human data



Example of a neuronal data volume

Animals

Time from image onset (ms)



Example of a neuronal data volume

Animals S — 8 Average over
- Image 2 Botit soikes i Animais B ~50 repetitions
my_Image 70-170 ms [ of each image

Time from image onset (ms)



Example of a neuronal data volume
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Example of a neuronal data volume

Many unigque

Animals Boats
- . ' images

Animals

(some sets
have over 2500

Boats unique images)
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Example of a neuronal data volume

Animals

Boats

Cars

Chairs

Faces

Fruits

Planes

Tables

Many unigue
images

(some sels
have over 2500
unique images)
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Are IT neural codes sufficient to explain human object recognition?

The simple hypothesis:

Passively-evoked spike rate codes distributed over non-human
primate IT cortex can fully explain human object recognition

1. Define a set of challengin
object recognition (O.R.) tasks

1

Same images
2. Measure human /mages —. 3. Measure large

behavioral performance samples of neuronal

: population spiking
in all of those O.R. tasks responses




Are IT neural codes sufficient to explain human object recognition?

The simple hypothesis:

Passively-evoked spike rate codes distributed over non-human
primate IT cortex can fully explain human object recognition

1. Define a set of challengin
ob_j_ect recognition (ORZ tasks

\

Same images
2. Measure human images —. 3. Measure large

behavioral performance samples of neuronal

: population spiking
in all of those O.R. tasks responses

‘-

Compute predicted O.R.
behavior from this neuronal
activity (“codes”, “decodes”)




IT neural responses

IT Neuron #

Image #



IT neural responses

: Does this predict
performance on all

our recognition tasks?

IT Neuron #

Image #



IT neural responses

Need to predict d
values for all 64 tasks

IT Neuron #

Image #



1 One decoder for each task b

* Linear discriminant (“classifier”™)
L * Learn weights that optimize performance)

IT neural responses

Need to predict d’
values for all 64 tasks

IT Neuron #

Image #



1 One decoder for each task b

* Linear discriminant (“classifier”™)
. * Learn weights that optimize performance)

IT neural responses

)3

iicar!‘f

Need to predict d’
values for all 64 tasks

IT Neuron #

Image #



-

%

One decoder for each task
* Linear discriminant (“classifier”)

* Learn weights that optimize performance,

IT neural responses

2

iicar'ﬂ‘

Need to predict d’
values for all 64 tasks

IT Neuron #

Image #

These decoders are simple, §p_e_g_ﬂ_c, instantiated hypotheses |
about how neuronal activity gives rise to behavior.




“Not Face”

a8

3

e

“Face”

IT Neuron #

Predicted™ behavioral
performance (d’) ~ 4

*always cross-validated



Neural responses

TS

“Face”

&

a ®owg)

“Not Face”

"

IT Neuron #

Predicted™ behavioral
performance (d’) ~ 4

*always cross-validated




*Not Car”

“Car”’

Predicted behavioral
performance (d’) ~ 2
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Are any IT neural codes sufficient to explain human object recognition?

1. Define a set of challengin%
object recognition (O.R.) tasks

l -
2 Measure human .>2™M€ Mages — 3. Measure large

behavioral performance samples of neuronal

: population spiking
in all of those O.R. tasks responses

ra

Compute predicted O.R.
behavior from this neuronal
activity (“codes”, “decodes”)




Are any IT neural codes sufficient to explain human object recognition?

1. Define a set of challengin
object recognition (O.R.) tasks

l

2. Measure human
behavioral performance

Same images —s. 3, Measure large
samples of neuronal

: population spiking
in all of those O.R. tasks \,? responses
4. Ask: can the proposed Con1/pute redicted O.R.

link quantitatively predict behavior from this neuronal
O.R. behavior ? activity (“codes”, “decodes”)



Test ANY putative visual “code” over a battery of recognition tasks
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Test ANY putative visual “code” over a battery of recognition tasks

(e.g. ‘face1” vs. other faces)
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Test ANY putative visual “code” over a battery of recognition tasks
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: Q 67
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Other possible results we might find.
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Other possible results we might find.

Performance of putative code (d
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Other possible results we might find.
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Other possible results we might find.

Performance of putative code (d)
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IT population code that predicts behavior is available
from 100 to 200 ms after stimulus onset

0.95
> 0.9
0.8

06 A A

0.4 | | N
0.2 V4 (128 units) N

0.0 o

Consistenc

0 100 200 300 400 500
Time (ms)



Performance re humans

mean[d’code/d 'behavior]
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Majaj. Hong. Soloman and DiCarlo. COSYNE (2012)
Majaj, Hong. Soloman and DiCarlo (under review)
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Performance re humans

mean[d’code/d 'behavior]
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Majaj. Hong. Soloman and DiCarlo, COSYNE (2012)
Majaj. Hong. Scloman and DiCarlo (under review)
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Number of neural “features”
(multi-unit, trial averaged)
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Number of single units
needed to support real- Number of neural “features”

time performance
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Are any IT neural codes sufficient to explain human object recognition?

1. Define a set of challenging
object recognition (O.R.) tasks

K

S
2 Measure haman ame fmages — 3. Measure large

behavioral performance samples of neuronal

population spiking
in all of those O.R. tasks o8 sp prledil

4. Ask: does the proposed\ Compute predicted O.R.

link quantitatively predict behawor rom this neuronal
O R behanor 9 actfwty (“codes”, “decodes”)



Are any IT neural codes sufficient to explain human object recognition?

1. Define a set of challengin
object recognition (O.R.) tasks

i

2. Measure human
behavioral performance

Same images —. 3, Measure large
samples of neuronal

: population spiking

in all of those O.R. tasks \ responses
4. Ask: does the proposed Compute predicted O.R.
link quantitatively predict behavior from this neuronal
O.R. behavior ? activity (“codes”, “decodes”)

YES'!



What neural codes explain human object recognition?

The simple hypothesis:

Automatically-evoked spike rate codes distributed over non-human
primate IT cortex can explain human object recognition



What neural codes explain human object recognition?

The simple hypothesis:

- Automatically-evoked spike rate codes distributed over non-human'

¥ primate IT cortex can explain human object recognition

Alternative, more complex (more attractive?) hypotheses:
IT does not directly underlie object recognition
(i.e. the key neuronal representations are elsewhere, e.g. V4, LIP, ...)

Rate codes in IT are not sufficient
(e.g. coordinated spike timing patterns are the true object codes)

Passively-evoked spike patterns are not sufficient
(e.g. attentional mechanisms are critical)

Compartments within IT must be carefully considered
(e.g. any tasks related to faces are handles by the “face patch” network)

Monkey neuronal codes cannot explain human perception
(e.g. any tasks related to faces are handles by the “face patch” network)



What neural codes explain human object recognition?

The simple hypothesis:

. Automatically-evoked spike rate codes distributed over non-human
"~ primate IT cortex can explain human object recognition

Parsimony: these more
complex alternatives are
not (yet) needed to explain
object recognition.



Our primary questions:

Why does the brain need to transform the pixel image ?
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Our primary questions:

Why does the brain need to transform the pixel image ?

yWhere is the solution located, and what form does it take?
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Our primary questions:

/" Why does the brain need to transform the pixel image ?

g'Where is the solution located, and what form does it take?

Behavior
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Automahcaily—evoked

~100 ms scale,
distributed rate code
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Our primary questions:

¢ Why does the brain need to transform the pixel image ?

g'Where is the solution located, and what form does it take?
Sufficient to explain performance

7%

Behavior

A Ag

Automatlcailyvoked
~100 ms scale,
dlsmbutel:l rate code

pixel RGC LGN V1 Vi V4 IT



Comparisons | will present today:

1. Monkey neurons vs. Human Behavior

Suggests that IT population codes are one
simple step from object recognition behavior
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Our primary questions:

/" Why does the brain need to transform the pixel image ?

Where is the solution located, and what form does it take?
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Our primary questions:

/" Why does the brain need to transform the pixel image ?

g'Where is the solution located, and what form does it take?

Behavior

A A4
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_— _— ~100 ms scale,
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Our primary questions:

y Why does the brain need to transform the pixel image ?

g'Where is the solution located, and what form does it take?

pixel

Sufficient to explain performance
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Behavior
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e — ~100 ms scale,

distributed rate code
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Comparisons | will present today:

1. Monkey neurons vs. Human Behavior

Suggests that IT population codes are one
simple step from object recognition behavior



Comparisons | will present today:

2 vs. Monkey neurons

Shows that a model focus on the behavioral goal
leads to a potential understanding of underlying
brain mechanisms.



Our primary questions:

How do the circuits of the ventral
stream transform the pixel image
to produce the IT representation ?
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Our primary questions:

How do the circuits of the ventral
stream transform the pixel image
to produce the IT representation ?

This is where neuroscience
meets computer vision, so
let’s start with those models.

_— e IT visual ‘features’

E_......., ...+KD Do QQ» (2» >

*---

e Transformat:on —

pixel RGC LGN Vi Vi V4 IT




Basic bio-inspired model layer

Set of Gabor filters

Basfcf operations: @ = (Bier, Ginr, Bsaty Gpools Grorm

Threshold & |
Saturate Pool Normalize

\
v “Output” is
> thousands
L1 of visual
features

Pinto, Cox & DiCarlo, PLoS Comp Biol (2008)



~2008: Tests of performance were not stringent enough.

Performance (%o correct)

SLF (~HMAX)

-

—

Caltech 101 benchmark

Fifteen training exampiles

«v1-like” «—— Neuroscientist null
models model outperforming
computer vision!

crnance

0.98%)

state of the art systems

b|
wr'

i

‘I
S

Pinto. Cox. and DiCarfo. PLoS Comp Bio (2008)




~2008: Tests of performance were not stringent enough.

Performance (%o correct)

SLF (~HMAX)

-

—

Caltech 101 benchmark

Fifteen training examples

«v1.like” «—— Neuroscientist null

models

state of the art systems

)

N
W 4

L

4
k

Pinto. Cox. and DiCaric. PLoS Comp Bio (2008)

model outperforming
computer vision!

chance

0.98%

Key problem was insufficient
variation in the test sets.




2009: We made more stringent, but compact benchmarks

Example object recognition task: “car detection”




2009: We made more stringent, but compact benchmarks

Example object recognition task: “car detection”

Image generation strategy:

: 3D objects Natural
Ll j scenes

Test image
- * "
ool Rendered object
- i
o b - %
View parameters BEREEEY s el ¥
(position, scale, pose, ...) Iﬁi’* 5T ot | WALt




2009: We made more stringent, but compact benchmarks

Example object recognition task: “car detection”

Image generation strategy:

. _'_'.'i

yriation =-——eP more variation - |Ots of variation



2009: We made more stringent, but compact benchmarks

Basic car task,
variation level: 3

‘@""

-
n>100 =  n>700

Binto. Co r&g..:al..f,. Bi g v.'.-r* ~mp Bl .-qmn Pinfo. DiCarfo and Cox .tf‘: ] 'mﬂm r:rnr- Doukan. DiCario & -"‘-; Bt oS Comp Biol 12009)



2009: We made more stringent, but compact benchmarks

Example object recognition task: “car detection”

Image generation strategy:

. _a_'.Ii

yriation =-——d more variation -y |Ots of variation



2010: Machines vs. human brains on these benchmarks

Machine

V1-like model)

Performance (d)
N

O...

T

] | ] ]
- -
L) = ._1 .

Amount of identity preserving variation

Data merged here: 48 basic-level tasks (s lavels x & level of variation)



2010: Machines vs. human brains on these benchmarks

Machines beat humans!
Y i

Machine
V1-like model)

Performance (d)

' L L] L}
"
2 4 6

Amount of identity preserving variation

Data merged here: 48 basic-level tasks (s iavels x & level of variation)



2010: Machines vs. human brains on these benchmarks

Machines beat humans!
y i

P~

Machines lose
to humans

1 - Machine

V1-like moagel)

Performance (d)
A

] | ] L] L}

0 2

Amount of identity preserving variation

o

Data merged here: 48 basic-level tasks (s iavels x & level of variation)



Performance

(% correct) -

i L ~J o e o

o o = ] o o Q
I I T

L
L=}

20

n
o
T

§|
k]

- pixels
} SIFT

Basic leve

categonzauon

3} V1-like

&,-‘;4

V2-like

-
v

/?5

HMAX
+ PLoS 09

< e
&
==

imr ’ Face
identification * dentification
—

*cc;

Objecﬁ r‘e_coghiﬁoh 1.0

(HVM 1.0 test set)

~2009: Computer
vision systems were
not viable hypotheses
of the ventral stream

And did not need 1,000,000
Images to tell us this




What was the problem?

Possibility A. T

I.."J
L
)
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Possibility B. We just don't know how to find the parameters.

< -- Transformation ——»

pixel RGC LGN Vi Vi V4 IT




What was the problem?

Possibility A. This largely feedforward hypothesis is deeply lacking

v
e | - - F 3 — - - - - - -
Possibili B ust don't know how to find the parameters
-t e e NS | - b LI ' W W L\ e L L == d | T N R [
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a---| s |j§---1 < ---- |- - - - - - - - - -

< -- ITransformation ——»

pixel RGC LGN Vi Vi V4 IT




What was the problem?

Possibility A. This largely feedforward hypothesis is deeply lackin

Possibility B. We just don't know how to find the parameters.

L’) Tal=lninlaarlaah AW ,--\ - ~ vr.--\. = = T ey ~ T --r-u. ,-"-I.r-,,l r'-vr-\. |ﬂ-..:(. |-- T r A
4 AVl J = | L i { [
ur 4pproacn. work | DEeITore iINtroauding the complexity or A.

0. Start with largely feedforward, bio-inspired model class
1. Optimize performance on tasks the brain is (re.) good at

2. Ask: do model features looks like the brains features?

,_,_,---""-- H__'_.___....-n
I( >| :::- (D f)/’“‘“ {Du*r p—r' "o (T(o) =
_-+'.. [a) ™
S Sere
"""' ' 4---- 4---— |- - - - - - - - - -

< -- Transformation ——»

pixel RGC LGN Vi Vi V4 IT




Basic bio-inspired (deep) model

Pinto, Doukan, DiCarlo & Cox, PLoS Comp Biol (2009)

Basic operations: @ = (Bsiers Oty Bsats Goools Bnorm)
Filter Threshold &

< Saturate Pool Normalize
.\_)i_:fD- =
W R s m—— N Deep hierarchy
HP Neural-like basic operations T —
LNN
Limited
‘~] ‘J "} feedback
|
X “Output” is
=
L1 = - thousands
1\\: of visual
L2 S features
13

Hubel & Wiesel (1962). Fukushima (1980); Perrett & Oram (1993); Wallis & Rolls (1997). LeCun et al. (1998)
Riesenhuber & Poggio (1999); Serre, Kouh, et al. (2003), etc...



Basic bio-inspired (deep) model

Random filter params Pinto, Doukan, DiCarlo & Cox, PLoS Comp Biol (2009)

Bas,t/me,—amns, O =  Grer |Gows Ghats Booors Brord We saw large performance
Threshold & N —— galn,:'-‘, by optimizing* the
T architectural parameters
— it : (a.k.a. hyperparameters)

i

g 6

W

| y 6 o- 6
3 | ; }

L1

w

- David Cox N{;:olas
Pinto

vicolas Pu [ [ DiCaurlo. David D. Cox (2
\ High-Throughput Screening Approach to Discovering Good Forms of Biologicallv Inspired Visual Representation |

FLOM(

0. David D. Cox (2

How far can vou get with a modern face recognition test set using only simple features?

= N T | b
LE & .0 . FRLLPRIAG 131 i Ll i kL NG REEL R ML



Basic bio-inspired (deep) model

Random fliter params Noticed that different types
Basro/ 0perations: O = e\ thats Groots Grorm) of object recognition tasks
e were best solved by
different choices of
architectural parameters

Model 1 Model 2

@
o

2
d

)
B

Faces vs. Tables
8 ]

o
[

3

23 a8 ar an» aw

Dan Yamins Ha Hong Fruits vs. Tables



Basic bio-inspired (deep) model

Random iliter params Noticed that different types
Basrc/ 0PErations: @ = (G |t that, bhocs Ghom of object recognition tasks
were best solved by
different choices of
architectural parameters

Suggested deep mixture model:

o~
N BT
LONVOILULION

{=) =) =) i~
: .

- (- =) =




Extended bio-inspired (deep) model

: S— James Bergstra. Daniel Yamins. David Cox
A \1“""‘-.‘__-_-_'—"—'—-—-___‘ ) = ! . . . s T
E N\ \‘ - Hyperopt: A Pvthon Library for Optimizing the
AN . . : ) . )
==n iy . Hvperparameters of Machine Learning Algorithms (2013)

Convolution

I
) - [ i~
(-} & i~
v
=

m—

Dan Yamins Ha Hong L4 Heterogeneity



Extended bio-inspired (deep) model

Convolution
(= - = .
=
- _— - P
(=) & -
“ {
Dan Yamins Ha Hong L4 Heterogeneity



Extended bio-inspired (deep) model

E i g f 2 . T
- : 2 | —— S
. — >4 1 8] § N -
! v\ i No E y = h — %‘
ﬂ 4 H“'_\_ \‘. . _“’""' é i\\ l =
e \y *\“ " . = N G s —
Convolution
- (& -~ i~
—

Dan Yamins Ha Hong L4 Heterogeneity



Extended bio-inspired (deep) model

Hierarchical | avenng
Brarcnical Laye g

-~ ,r-ﬂ““'_"""__“--.. aboos T Adabo
q g ’ ~ — f/_____._........._______‘\_h -
- 2 =£P—* o 3
i — > I8 S — _ -
\ S i —— S ; \ ) : N f
\\H"“:_-—‘H—""‘—-‘ | O o _-_-‘_-—_-_-—""—‘-1 el
R NS : N e | =]
We are not wedded to this optimization
. . g Convolutior
Hierarchical modular -

optimization (HMO) L1 L
- - (=) & 1 =
' L2
- 1
i L3




Model screening images/tasks:

pvariety of objects (36) with some semantic breadth (e.g. not all faces)
»no background/object correlation confounds
»rendered with large amount of variation ==> 4500 images

Bodies Buildings Flowers Guns Instruments

-




Model test images/tasks:

e Objecl: recognition
- -0

.l’ Basic level ‘
categorization

~_—

@ =

CE N



Model test images/tasks:

Ob ect recogm.hon

"" e (HVM 1.0)

Basic level ‘
categorization

e

@ = >

V4 NEURONS |

2
2 2230
E:-r:-l::.lz_l
Lo IS ]

Test performance

Medium Vanation Tasks

o
-

}
|
-
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Model test images/tasks:

. — Y

— a

ll Basic level & )

. i — First model produced by the
HMO procedure (HMO 1.0)

U

Objecé recognition

Q. R
Q

- &

©

:

£ o

2- . ge48H I
b X Lo oo 2 2l K

g_:.;c:>>rn.

=

Low Variation Tasks Medium Variation Tasks I—th Variation Tasks
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Our overarching strategy:

0. Bio-inspired model class

1. Optimize performance on tasks the brain is re. good at
2. Ask: do model features looks like the brains?

Behavioral Tasks
e.g. Faces vs Non-Faces

- __ =
- ’v“ ~
ol &
k|

Neural Recordings from IT & V4

= 38 S

™ A i “ﬁﬂmwmm

. 1. Optimize Model Parameters for Task Performance
Wﬁw
IT * —
=t 2. Test : Hierarchical Model
o wi oo . Per-Site Neural *+ —
7 . Predictions " "
e = == Operations in Linear-Noniinear Layer
e _t L_r‘ T e [ ;—-
n il i P
——  Threshold P Normail ze
Filtar
t
I,JIH. &

 J = /
aid -
Senal Visual
Fresentation - /_N
image Input



Predictions of single site IT responses from HMO 1.0 model

=

=

L -

Unit 1: /2 = 0.48 x,_ )

Response of A
IT neural site
/ i
Prediction of Animals Boats Cars Chairs Faces Fruits Planes Tables
HMOQO model

Yamins, Hong. Soloemon. Seibert and DiCarlo {under review)



Predictions of single site IT responses from HMO 1.0 model

n

Response Pf Unit 2: r2 = 0.55
IT neural site

/

Prediction of
HMO model

Animals Boats Cars Chairs Faces Fruits Planes Tables

Yamins, Hong. Soloemon. Seibert and DiCarlo {under review)



Predictions of single site IT responses from HMO 1.0 model

IT Site 42

Response of
IT neural site

Prediction of
HMO model

Yamins, Hong. Solomon. Seibert and DiCarlo (under review)



Cars Chairs Faces Fruits Planes Tables

e HMQ prelett?n <
— V2-like prediction e 27N __._




HMO
a7l ~50% of IT single unit response variance explained. ]

Dramatic improvement over previous models.

HMO
Layer 3
0.36)

o
un

HMO
Layer 2
0.21)

o
o
T

HMO
;a,Er1

A A
(ERP Y]

o
W

Category
4+ All Variables

o
N

Site Counl

it

v 2-Like
Moded

Lo
J.£0)

o
Pixels

HMAX
Model
0.23)

K

Explained Variance Fraction

o
o

|deal Control HMO
Vi1-Like Observers Models Layers

Model

-u"_‘l

Category
Ideal
Observer

4
] |

Single Site Explained Variance

Yamins, Hong. Solomon. Seibert and DiCarlo (under review)



HMOC
Top Layer

(0.48) ~50% of IT single unit response variance explained.
Dramatic improvement over previous models.

3

wn

o
b
Il Variables

o
Cad
Category

aile Counl

i

Explained Variance Fraction

, 0.2
- 0.1
25 0.0
Ideal Control HMO
Observers Models Layers

I”ﬂ e

Model class plus optimization criteria are
inducing brain-like structure beyond that
bs 1-;-'-?’ induced by the task

Yamins, Hong. Solomon. Seibert and DiCario {under review)




Comparing two population representations

Response
of neuron 2

A

>

Response
of neuron 1

Response
of neuron 3

Layout of images in
neuronal space (e.g. IT)

[44]
f
e
514]
(¥
T
[

r



Comparing two population representations
Response : &l ‘
of neuron 2 i

A
.ﬁ

>

Response
of neuron 1

Response
of neuron 3

Layout of images in
neuronal space (e.g. IT)

~ T=T -~ L ] o~ - i -\-I.-\-‘
see Kriegeskorte ef al. (2008



Comparing two population representations

' \
Response . &l Response
of neuron 2 | of feature 2

A A
1A
v
»
.1*
- , -
Response Response
of neuron 1 73 of feature 1
¥
Response Response
of neuron 3 of feature 3

_ ) Layout of same images in

Layout of images in feature representation of

neuronal space (e.g. IT) any putative model of the
ventral stream

-

see Kriegeskorte et al. (200

(8 & ]



Representation Dissimilarity Matrices (Kriegeskorte, 2008)

M;; = 1 — correlation(r;.r;)

atez---nu--n- " 4 P4
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means the two \ A% ":;E— |
: . , B g = = O
stimuli are close a2 23
. ; -9 —
In feature/neural IS HEE
: § 3.8
population Reib =
response space Tae® =3
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aedl =3
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High M; (red) means the two stimuli are far in feature/neural space




Representation Dissimilarity Matrices

» RDMs allow comparison of any two feature representations on a
common stimulus set




Representation Dissimilarity Matrices

» RDMs allow comparison of any two feature representations on a

common stimulus set

» IT (Monkey |) vs.IT (Monkey2)

» IT vs.V4
» IT vs. Model X
» Monkey IT vs. Human “IT"

Monkey IT

(neural spiking responses)
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Kriegeskorte, 2008

Human LOC (*IT

(fMRI voxel responses)
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Representation Dissimilarity Matrices

» RDM structure echoes the performance
‘: of the population code

e.qg. Images for Object
recognition 1.0 (HVM 1.0)
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Representation Dissimilarity Matrices: models vs. IT

Popululation similaritty to IT

Model captures diagonal and off-diagonal RDM structure effectively.

(RDM correlation)

0.9 9

0.6 1

Explanatory power
of HMO model

, Lurrent maxiunmum possible”

/’ explanatory power

7 ’{/
¥

Image
generalization

MC.’"FQE'# T

HMO Model
4 e .

! .

_J':
] Uit
2 3
@
o a - =
= = ﬁ =
. ibles
o> X > 1 i Sy
A s - o - o
Z. O = x e, e
i J £ -

Yamins. Hong, Sclomon, Seibert and DiCarfo (under review)




Yamins. Hong. Solomon, Seibert and DiCario (under review)

HMO model

jg Arimails (8)

& Chairs (8)
»! Faces (8)

Pixels V1-like

pixel RGC LGN



Our overarching strategy:
0. Bio-inspired model class

1. Optimize performance on tasks the brain is re. good at
2. Ask: do model features looks like the brains?

- Neural Recordings from IT & V4 EEEEaEfjlﬂratlaffib

. - - ] -

= S e a- 5 -
e N o Nriigsr ™~
WMWWMN ol

1. Optimize Model Parameters for Task Performance

2. Test 3 Hierarchical Model
s Per-Site Neural t .
L LN aver <4
va . Predictions 7
= Pl s — —— Operations in Linear-Nonlinear Layer
— — —
- . EDG B e[ e e
U‘l 3_.2" 1 e o —_— s s | -
T bl Threshold e malize
Filtar
t
D ayer

. - / ayer 1
A sabid _N
Senal Visual
image Input

Yamins. Hong, Soloman, Seibert and DiCario (under review)



IT goodness of fit

(median over all neurons)

n

[

[ ]
4

o
Cad

Calegory
4+ All Variables

%]
« V1-Like

Pixels

=
-

Explained Variance Fraction

[ ]
o

Ideal Control HMO
Observers Models Layers

Yamins. Hong. Sclomon, Seibert and DiCarfo (under review)



V4 goodness of fit IT goodness of fit

(median over all neurons) (median over all neurons)
- ' cCo0s
-_9, 0.5 § 4.2 .
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ldeal Control HMO Ideal Control HMO
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Yamins. Hong, Solomon, Seibert and DiCario (under review)



Model class plus optimization criteria
is inducing brain-like structure beyond

that induced by the task

IT goodness of fit

(median over all neurons)

V4 goodness of fit

(median over all neurons)

foa

Variables

alegory

I

)

i} V1-Like

Explained Variance Fraction
I

Explained Variance Fraction

7]
D
> 3 ’
£l !
it B < O ’ ] =
w1 |
Ideal Control HMO deal Control HMO
Observers Models Layers Observers Models Layers

Yamins. Heng, Solomon, Seibert and DiCario (under review)
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See Poster T63 tonight!

Yamins, Hong et al. NIPS 2013

2. vs. Monkey neurons

Shows that a model focus on the behavioral goal
leads to a potential understanding of underlying
brain mechanisms.



Representation Dissimilarity Matrices: models vs. [T

HMO IT Neurons

s Animais (8)
Boats (8)
s Cars (B)

l Chairs (8)
Faces (8)

§ Planes (8]
w Tables (8)

= = Animals (4)

== Cars (4)

| Chairs (4)
Faces (4)
Fruits (4)

Planes (4)
Tables (4)

Tables (8)

Yamins. Hong

, Soloman, Seibert and DiCario (under review)



Representation Dissimilarity Matrices: models vs. [T

IT Neurons

8 Animais (8)
Boats (8)

Animals 14}

== Cars (4)

-_ L I
| Chairs (4)

Faces (4)
Fruits (4)

Flanes (4)
Tables (4)

Tables (8)

b

Popululation similantty (o |1

(R o reslifiogs)

'rp

-
o

[
Lad

Explanatory power
of HMO model

-~ .
s Lurrent maximum possible

expianaltory power

/

B

Image
generalization

Object
gen eralization

Categary
generalization

Puol

Ability of current best
performing model to predict IT
population is extremely good

Yamins. Hong, Soloman, Seibert and DiCario (under review)



3. vs. Monkey neurons/Human behavior

Demonstrates the recent bio-inspired models
rival the brain in object recognition



What about other networks built for
high performing object recognition?
(e.g. DNNs)

Charles Cadieu

Cadieu CF, Hong H. Yamins D, Pinto N, Majaj N, and DiCarlo JJ. ICLR (2013)




What about other networks built for
high performing object recognition?

(e.g. DNNs)
Krizhevsky et al. (2012)

Zeiler and Fergus (2013)

et
m———

Charles Cadieu

Cadieu CF, Hong H., Yamins D, Pinto N, Majaj N, and DiCarlo JJ. ICLR (2013)




What about other networks built for
high performing object recognition?

(e.g. DNNs)
Krizhevsky et al. (2012)

Zeiler and Fergus (2013)

| 2 &

Charles Cadieu

Najib Majaj

Cadieu CF, Hong H., Yamins D, Pinto N, Majaj N, and DiCarlo JJ. ICLR (2013)




Brain features vs.
Machine features

Cadieu CF, Hong H, Yamins D, Pinto N, Majaj N, and DiCarlo JJ. ICLR (2013)




Brain features vs. Object recogmition 1.0
Machine features

a) Cars Fruits Animals
y Plane
oo B 'h—ﬁ_”"""" _Chai
>\ Tabi
: . ; Fac
n T

Cadieu CF, Hong H. Yamins D, Pinto N, Majaj N, and DiCarlo JJ. ICLR (2013)




Brain features vs. Object recoguition
Machine features (HVMm1.0)

a) Cars Fruits Animals
Planes
B .lfianit'a
! Tables
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e
Retinae Representation [T Cortex Representation
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o Ventral Stream o °®
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_ Q
¥ O

O Cars @ Fruus

Cadieu CF, Hong H. Yamins D, Pinto N, Majaj N, and DiCarlo JJ. ICLR (2013)




Brain features vs. Object recoguition
Machine features (HVYMm1.0)

a) Cars Fruits Animals
Planes
- LA I - l.{-_'.ill-ll[-l\
! Tables
Faces

g

Retinae Representation
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O . : 2]
° 2 Ventral Stream o °®
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DNN Representation
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Network (DNN) o o 0O
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NI ] L O
0
¥

O Cars @ Fruis

Cadieu CF, Hong H. Yamins D, Pinto N, Majaj N, and DiCarlo JJ. ICLR (2013)




Brain features vs. Object recoguition
Machine features (HVM1.0)

a) Cars Fruits Animals
Planes
- e e L {-_'.ill-llt\
! Tables
Faces
-
p—— Evaluation
[T Cortex Representation L
o . L ]
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Cadieu CF, Hong H. Yamins D, Pinto N, Majaj N, and DiCarlo JJ. ICLR (2013)




Linear-SVM Generalization Performance

of Machine and Neural Representations

~ performance during
single fixation sample

NS H \
: of the image (no mask)
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Cadieu CF, Hong H. Yamins D, Pinto N, Majaj N, and DiCarlo JJ. ICLR (2013)




~200 ms “snapshot” samples

Image adapted from MIT Sireet Scenes Database (Courtesy of Tommy Poggio)



Central 10 deg, 200 ms “snapshot” samples

Core object recognition \



Central 10 deg, 200 ms “snapshot” samples

Core object recognition




Central 10 deg, 200 ms “snapshot” samples

Core object recognition |
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Demonstration of Kernel Analysis
Based on [Braun et al. 2008] and [Montavon et al. 2012]
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Kernel Analysis Curves of Neural
and Machine Representations
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These results hold, regardless of

number of features
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Upshot: the field
now has at least
three candidate
hypotheses for
the brain’s ventral
stream
mechanisms.

SuperVision

ZLeiler&Fergus

HMO




Run the HVM1.0 benchmark:

http://dicarlolab.mit.edu/neuralbenchmark

Images: for each variation level
Code: to compute benchmark from your features
Training Set: Independent set to train algorithms

Cadieu CF, Hong H. Yamins D, Pinto N, Majaj N, and DiCarlo JJ. ICLR (2013)
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Object recognition 1.0

Brain vs. Machine

Cars Fruits . Animals

Too early to Do models satisfy more stringent
declare victory predictions on these images?

(e.g. image-by-image patterns of confusion?)

Test other task challenges! ObJEC'Z !‘ECOSV\LELOH 2.0
E.g. occlusion, illumination, ... (H\/M2,0)




Comparisons | will present today:

1.

Monkey neurons vs. Human Behavior

Suggests that IT population codes are one
simple step from object recognition behavior

vs. Monkey neurons

Shows that a model focus on the behavioral goal
leads to a potential understanding of underlying
brain mechanisms.

vs. Monkey neurons/Human behavior

Demonstrates the recent bio-inspired models
rival the brain in object recognition
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Take home messages

*/nvariance is the crux computational problem

» “Simple” IT population rate codes are sufficient to account for unfettered human
object recognition (HVM 1.0). Testing monkey behavior & sharpening tests.

*» These IT codes are computed “reflexively” in ~100 ms, and are likely shared by
human and non-human primates

» The key transformations live between V1 and IT

*» We have been searching a large class of bio-constrained models. High
performing models can accurately predict IT neuronal responses, and their
intermediate layers predict V4 responses.

» QOther artificial deep conv networks are now rivaling neural and human performance on
our (HVM1.0) benchmarks --> viable hypotheses for ventral stream mechanisms.

» The brain has guided computer vision; CV is now providing a deeper
understanding of the brain .
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