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Computer experiments

Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

Challenges for statistics:
How do we make inferences about the world from a simulation of it?




Computer experiments

Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

Challenges for statistics:
How do we make inferences about the world from a simulation of it?

how do we relate simulators to reality? (model error)

how do we estimate tunable parameters? (calibration)

2
2
@ how do we deal with computational constraints? (stat. comp.)
?

how do we make uncertainty statements about the world that
combine models, data and their corresponding errors? (UQ)




Calibration

@ For most simulators we specify parameters # and i.c.s and the
simulator, f(#), generates output X.

@ We are interested in the inverse-problem, i.e., observe data D, want
to estimate parameter values # which explain this data.
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Intractability

m(D|6)~(6)

=(0D) = =5

@ usual intractability in Bayesian inference is not knowing (D).
@ a problem is doubly intractable if 7(D|8) = cyp(D|0) with ¢
unknown (cf Murray, Ghahramani and MacKay 2006)

@ a problem is completely intractable if 7(D|#) is unknown and can't
be evaluated (unknown is subjective). l.e., if the analytic distribution
of the simulator, f(#), run at 6 is unknown.

Completely intractable models are where we need to resort to ABC
methods




Common example

Tanaka et al. 2006, Wilkinson et al. 2009, Neal and Huang 2013 etc
Many models have unobserved branching processes that lead to the data
making calculation difficult. For example, the density of the cumulative
process Is unknown in general.
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Approximate Bayesian Computation (ABC)

Given a complex simulator for which we can't calculate the likelihood
function - how do we do inference?




Approximate Bayesian Computation (ABC)

Given a complex simulator for which we can't calculate the likelihood
function - how do we do inference?

If its cheap to simulate, then ABC (approximate Bayesian computation)is
one of the few approaches we can use.

ABC algorithms are a collection of Monte Carlo methods used for
calibrating simulators
@ they do not require explicit knowledge of the likelihood function

@ inference is done using simulation from the model (they are
‘likelihood-free").




Approximate Bayesian computation (ABC)

ABC methods are primarily popular in biological disciplines, particularly
genetics and epidemiology, and this looks set to continue growing.

@ Simple to implement
@ Intuitive
@ Embarrassingly parallelizable
@ Can usually be applied
ABC methods can be crude but they have an important role to play.




Approximate Bayesian computation (ABC)

ABC methods are primarily popular in biological disciplines, particularly
genetics and epidemiology, and this looks set to continue growing.

@ Simple to implement
@ [ntuitive
@ Embarrassingly parallelizable
@ Can usually be applied
ABC methods can be crude but they have an important role to play.

First ABC paper candidates
Beaumont et al. 2002
Tavaré et al. 1997 or Pritchard et al. 1999
Or Diggle and Gratton 1984 or Rubin 1984




Tutorial Plan

Part |
I. Basics
ii. Efficient algorithms

iii. Links to other approaches
Part Il

iv. Regression adjustments/ post-hoc corrections

v. Summary statistics

vi. Accelerating ABC using Gaussian processes




‘Likelihood-Free’ Inference

Rejection Algorithm
@ Draw @ from prior 7(-)
@ Accept 6 with probability 7(D | 6)

Accepted f are independent draws from the posterior distribution,

(0 | D).




‘Likelihood-Free’ Inference

Rejection Algorithm
@ Draw @ from prior 7(-)
@ Accept 8 with probability 7(D | 6)

Accepted @ are independent draws from the posterior distribution,
w(6 | D).
If the likelihood, 7(D|#), is unknown:
‘Mechanical’ Rejection Algorithm
@ Draw @ from =(-)
@ Simulate X ~ f(#) from the computer model

@ Accept @ if D = X, i.e., if computer output equals observation

The acceptance rate is [ P(D|8)n(0)dé = P(D).
The number of runs to get n observations is negative binomial, with mean
B(D): = Bayes Factors!




Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any 6. Instead,
there is an approximate version:

Uniform Rejection Algorithm
@ Draw 6 from =(6)
@ Simulate X ~ f(68)
@ Accept 0 if p(D, X) < ¢
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Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any 6. Instead,
there is an approximate version:

Uniform Rejection Algorithm
@ Draw 6 from =(6)
@ Simulate X ~ f(60)
@ Accept 0 if p(D,X) < ¢




Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any 6. Instead,
there is an approximate version:

Uniform Rejection Algorithm
@ Draw 6 from =(8)
@ Simulate X ~ f(6)
@ Accept 0 if p(D,X) < ¢

This generates observations from 7(8 | p(D, X) < €):
@ As € — 0o, we get observations from the prior, 7(0).
e If e = 0, we generate observations from 7 (@ | D).

e reflects the tension between computability and accuracy.

For reasons that will become clear later, we call this uniform-ABC.
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Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any 6. Instead,
there is an approximate version:

Uniform Rejection Algorithm
@ Draw @ from 7(6)
@ Simulate X ~ f(0)
@ Accept 0 if p(D, X) < ¢

This generates observations from 7(8 | p(D, X) < €):
@ As € — 00, we get observations from the prior, 7(8).
e If e =0, we generate observations from w(8 | D).

e reflects the tension between computability and accuracy.

For reasons that will become clear later, we call this uniform-ABC.
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p(D,X) =|D — X|, D=2
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Rejection ABC

If the data are too high dimensional we never observe simulations that are
‘close’ to the field data - curse of dimensionality
Reduce the dimension using summary statistics, S(D).

Approximate Rejection Algorithm With Summaries
@ Draw @ from 7(0)
@ Simulate X ~ f(8)
@ Accept 6 if p(S(D),S(X)) < ¢

If S is sufficient this is equivalent to the previous algorithm.




Two ways of thinking

We think about linear regression in two ways

@ Algorithmic: find the straight line that minimizes the sum of squared
errors

@ Probabilistic: a linear model with Gaussian errors fit using MAP
estimates.
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estimates.

Kalman filter:

@ Algorithmic: linear quadratic estimation - find the best guess at the
trajectory using linear dynamics and a quadratic penalty function

@ Probabilistic: the (Bayesian) solution to the linear Gaussian filtering
problem.




Two ways of thinking

We think about linear regression in two ways

@ Algorithmic: find the straight line that minimizes the sum of squared
errors

@ Probabilistic: a linear model with Gaussian errors fit using MAP
estimates.

Kalman filter:

@ Algorithmic: linear quadratic estimation - find the best guess at the
trajectory using linear dynamics and a quadratic penalty function

@ Probabilistic: the (Bayesian) solution to the linear Gaussian filtering
problem.

The same dichotomy exists for ABC.
@ Algorithmic: find a good metric, tolerance and summary etc

@ Probabilisticc What model does ABC correspond to, and how should
this inform our choices?




Modelling interpretation - Calibration framework
Wilkinson 2008/2013
We can show that ABC is “exact”, but for a different model to that
intended.
wasc(D|8) is not just the simulator likelihood function:

maac(DI6) = [ m(Dbom(xip)dx

me(D|x) is a pdf relating the simulator output to reality - call it the
acceptance kernel.
m(x|@) is the likelihood function of the simulator (ie not relating to

reality)

Common way of thinking (Kennedy and O'Hagan 2001):
@ Relate the best-simulator run (X = f(#)) to reality ¢
@ Relate reality ¢ to the observations D.

g > £(8)

| meas. error




Calibration framework

The posterior is

wasc(0|D) = ;/WE(D|X)W(X|9)dX. ()

where Z = [[ w(D|x)m(x|8)dx=(0)d8




Calibration framework

The posterior is

wasc(0|D) = ;/WE(D]X)TT(X|6)C]X. w(68)

where Z = [[ w(D|x)m(x|8)dxx(0)d8

To simplify matters, we can work in joint (f, x) space

Te(D|x)m(x|0)m(0)
Z

Tasc(f,x|D) =

NB: we can allow 7.(D|X) to depend on 6.




How does ABC relate to calibration?

Consider how this relates to ABC:

me(D|x)m(x|0)m(6)
7 4

wasc(f,x) := (6, x|D) =




How does ABC relate to calibration?

Consider how this relates to ABC:

me(D|x)m(x|0)=(6)

magc (6, x) == (6, x|D) = L

Lets sample from this using the rejection algorithm with instrumental
distribution

g(0,x) = m(x|8)(6)

@ Note: supp(masc) C supp(g) and that there exists a constant
M="—== ";{Dlx) such that

masc(f0,x) < Mg(0,x)  V(6,x)




Generalized ABC (GABC)

Wilkinson 2008, Fearnhead and Prangle 2012
The rejection algorithm then becomes

Generalized rejection ABC (Rej-GABC)
1 8 ~ 7(0) and X ~ 7(x|8) (ie (8, X) ~ g(-))
2 Accept (0, X) if

?TABC(Qa X) _ TTE(D|X)

U~ U[0,1] <

Mg(0,x) ~ max, m(D|x)
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me(D|x)m(x|0)=(6)
Z

maBc(f,x) :=m(6,x|D) =

Lets sample from this using the rejection algorithm with instrumental
distribution

g(8,x) = n(x|8)m(6)

@ Note: supp(masc) C supp(g) and that there exists a constant
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Generalized ABC (GABC)
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The rejection algorithm then becomes

Generalized rejection ABC (Rej-GABC)
1 8 ~ 7(8) and X ~ 7(x|8) (ie (8, X) ~ g(-))
2 Accept (0, X) if

?TABC(Q, X) 25 TTE(D|X)

U~ U[0,1] <
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Generalized ABC (GABC)

Wilkinson 2008, Fearnhead and Prangle 2012
The rejection algorithm then becomes
Generalized rejection ABC (Rej-GABC)
1 8 ~m(f) and X ~ 7(x|8) (ie (8,X) ~ g(-))
2 Accept (0, X) if

?TABC(QS X) . TTE(D|X)

== nlg —
U L’[“':l 1] — Mg(ex) maxy ?TE(Dl‘x)

In uniform ABC we take

1 ifp(D,X)<e€
0 otherwise

Te(D|X) = {

this reduces the algorithm to
2" Accept 0 ifF p(D, X) < €
ie, we recover the uniform ABC algorithm.




Uniform ABC algorithm

This allows us to interpret uniform ABC. Suppose X,.D € R

Proposition

Accepted € from the uniform ABC algorithm (with p(D, X) = |D — X]|)
are samples from the posterior distribution of # given D where we assume
D = f(#) + e and that

e ~ U[—e, €]

In general, uniform ABC assumes that
D|x ~ U{d : p(d, x) < €}

i.e., D is generated by adding noise uniformly chosen from a ball of radius
e around the best simulator output f(68).
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Wilkinson 2008, Fearnhead and Prangle 2012
The rejection algorithm then becomes
Generalized rejection ABC (Rej-GABC)
1 8 ~m(f) and X ~ w(x|@) (ie (8,X) ~ g(-))
2 Accept (0, X) if
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In uniform ABC we take

1 ifp(D,X)<e€
0 otherwise

m(D]|X) = {

this reduces the algorithm to
2" Accept 0 ifF p(D, X) < ¢
ie, we recover the uniform ABC algorithm.
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This allows us to interpret uniform ABC. Suppose X,D € R

Proposition

Accepted 6 from the uniform ABC algorithm (with p(D, X) = |D — X]|)
are samples from the posterior distribution of # given D where we assume
D = f(@) + e and that
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Uniform ABC algorithm

This allows us to interpret uniform ABC. Suppose X,D € R

Proposition

Accepted € from the uniform ABC algorithm (with p(D, X) = |D — X]|)
are samples from the posterior distribution of # given D where we assume
D = f(#) + e and that

e ~ U[—e, €]

In general, uniform ABC assumes that
D|x ~ U{d : p(d, x) < €}

I.e., D is generated by adding noise uniformly chosen from a ball of radius
e around the best simulator output f(6).

ABC gives ‘exact’ inference under a different model!




Acceptance Kernel - 7m(D|x)
Kennedy and O'Hagan 2001, Goldstein and Rougier 2009

How do we relate the simulator to reality?

Measurement error - D = ( + e - let m.(D|X) be the distribution e.
Model error - { = (@) + J - let m(D|X) be the distribution e.

Or both: 7.(D|x) a convolution of the two distributions

Sampling a hidden space - often the data D are noisy observations of
some latent feature (call it X), which is generated by a stochastic
process. By removing the stochastic sampling from the simulator we
can let m(D|x) do the sampling for us (Rao-Blackwellisation).




Kernel Smoothing
Blum 2010, Fearnhead and Prangle 2012

Viewing ABC as an extension of modelling isn't commonly done.

@ allows us to do the inference we want (and to interpret)

» - makes explicit the relationship between simulator and observations.

@ allows for the possibility of more efficient ABC algorithms




Kernel Smoothing
Blum 2010, Fearnhead and Prangle 2012

Viewing ABC as an extension of modelling isn't commonly done.

@ allows us to do the inference we want (and to interpret)
» - makes explicit the relationship between simulator and observations.

@ allows for the possibility of more efficient ABC algorithms

A different but equivalent view of ABC is as kernel smoothing

masc(0|D /K — x)m(x|0)m(6)dx

where K. (x) = 1/eK(x/€) and K is a standard kernel and ¢ is the
bandwidth.




Efficient Algorithms

References:

@ Marjoram et al. 2003
Sisson et al. 2007
Beaumont et al. 2008
Toni et al. 2009
Del Maral et al. 2011
Drovandi et al. 2011




ABCifying Monte Carlo methods

Rejection ABC is the basic ABC algorithm.
@ Inefficient as it repeatedly samples from prior
A large number of papers have been published turning other MC

algorithms into ABC type algorithms for when we don't know the
likelihood: IS, MCMC, SMC, EM, EP etc

Focus on MCMC and SMC

@ presented for GABC with acceptance kernels, but most the
algorithms were written down for uniform ABC, i.e.,

Te(D|X) = Lyp,x)<e

and we can make this choice in most cases if desired.




MCMC-ABC

Marjoram et al. 2003
We are targeting the joint distribution

maBc(f, x| D) x 7 (D|x)m(x|0)m(8)
To explore the (@, x) space, proposals of the form

Q((8,x),(8',x")) = q(6,8")m(xX"|¢")
seem to be inevitable (g arbitrary).

The Metropolis-Hastings (MH) acceptance probability is then

_ masc(¢'|D)Q((¢', x'), (8, x))
waec(0|D)Q((9, x), (¢, x"))
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MCMC-ABC
Marjoram et al. 2003
We are targeting the joint distribution

masc(0, x| D) x 7 (D|x)m(x|0)m(6)
To explore the (@, x) space, proposals of the form

Q((8,x), (8", x")) = q(8,8")x(xX"|¢")
seem to be inevitable (g arbitrary).

The Metropolis-Hastings (MH) acceptance probability is then

_ masc(¢'|D)Q((¢', x'), (8, x))
Tasc(0|D)Q((8, x), (¢, x"))




This gives the following MCMC kernel
MH-ABC - Ppai(6o, -)

1 Propose a move from z; = (6, x) to (€', x') using proposal @ above.
2 Accept move with probability

. me(D|x")q(¢’, 8)m(¢’)
r((6,x), (¢,x")) = ”""( we(Dlx)q(&@’)W(ﬁ))’

otherwise set z; .1 = z;.




This gives the following MCMC kernel
MH-ABC - Pri(fo, -)

1 Propose a move from z; = (6, x) to (¢, x") using proposal Q above.

2 Accept move with probability

! me(D|x")q(#’, 8)m ()
r((6,x), (¢, x")) = """( WE(D|x)q(9..9’)w(9))’

otherwise set z; .1 = z.

In practice, we find this algorithm often gets stuck at a given @, as the
probability of generating x’ near D can be tiny if € is small.

Note that this is a special case of a " pseudo marginal”
Metropolis-Hastings algorithm, and can be modified to use multiple
simulations at each 6, i.e.

—— (1_ SN m(Dlx)a(e, 9)w(9’))
321 me(Dlx)q(6, ) (6)
to better approximate the likelihgeeera




Recent developments - Lee 2012

1-hit MCMC kernel - Pl;,,-t(t?g, )
1 Propose &' ~ q(6:, -)
2 With probability

1 i (1, 420020

" q(6:,0")m(6:)

set Op41 = 04

3 Sample x’ ~ 7(-|0") and x ~ 7(-|8:) until p(x’, D) < € or
p(x,D) <.

4 If p(x’,D) < € set 11 = 0 otherwise set 0,1 = 6;




This gives the following MCMC kernel
MH-ABC - Puar(6o, -)

1 Propose a move from z; = (6, x) to (¢, x") using proposal Q above.

2 Accept move with probability

.. me(D|x")q(¢’, O)m(¢)
r((6,x), (6. x")) = ""'"( WE(D|x)q(9..9’)w(9))’

otherwise set z; .1 = z;.




MCMC-ABC

Marjoram et al. 2003
We are targeting the joint distribution

maBc(0, x|D) o we(D|x)m(x|8)m(6)
To explore the (@, x) space, proposals of the form
Q((6, %), (¢, X)) = a(8,0')(x|¢")
seem to be inevitable (g arbitrary).
The Metropolis-Hastings (MH) acceptance probability is then

_ masc(¢'|D)Q((¢, x'), (6, x))
a5 (81D)Q((8.%). (0. X))
_ w(D|x")m(x'|0" )7 (6 ) q(&, 0)m(x|0)

7e(D]x)(x|8)n(8)a (6, 0')r(x'|¥")
_ 7(DIx')a(¢', 6)(#)
w(D1x)a(®,#)(0)

; L &3 OF 14




This gives the following MCMC kernel
MH-ABC - Ppssri(6o, )

1 Propose a move from z; = (6, x) to (€', x') using proposal @ above.

2 Accept move with probability
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r((6,x), (6. x")) = ""'"( WE(D|x)q(9..9’)w(9))’

otherwise set z; .1 = z;.




MCMC-ABC
Marjoram et al. 2003
We are targeting the joint distribution

maBc(0, x| D) x m(D|x)m(x|0)m(6)
To explore the (@, x) space, proposals of the form

Q((8,x),(¢',x")) = q(0,0")m(xX"|¢")
seem to be inevitable (g arbitrary).

The Metropolis-Hastings (MH) acceptance probability is then

_ masc(¢'|D)Q((¢, x'), (6, x))
7a8c(0]D)Q((6, x), (8", X))

_ Te(D|x" ) (X' |0)7(6")g(&', @) (x|6)
me(D|x)m(x|0)7(8)q(8, 6")m(x’|6")




This gives the following MCMC kernel
MH-ABC - Ppai(6o, -)

1 Propose a move from z; = (6, x) to (€', x') using proposal Q above.

2 Accept move with probability

' me(D|x")q(¢’, 6)m ()
r((6,x), (6, x)) = m'"( wE(DIx)CI(&.@’)W(f}))

otherwise set z; .1 = z;.




Recent developments - Lee 2012

1-hit MCMC kernel - Plh_;t(eg, )
1 Propose &' ~ q(6:, -)
2 With probability

1 — min (1 q(¢, et)ﬂ(gf))

" q(6:,0")m(6:)

set Op41 = 0

3 Sample x’ ~ 7(-|0") and x ~ 7(-|@;) until p(x’, D) < € or
p(x,D) <.

4 If p(x’,D) < € set 11 = 0 otherwise set 0,1 = 6;




Recent developments
Lee et al. 2013 showed P, is neither
@ variance bounding
» Let m = 23" h(8;) - Markov kernel P is variance bounding if
Varp(m) is " reasonably small”

@ nor geometrically ergodic (GE) i.e ||P™(6g,-) — masc(-)||7v < Cp™
where p < 1. Markov kernels that are not GE may convergence
extremely slowly.

whereas P;;: is (subject to conditions).
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Lee et al. 2013 showed P, is neither
@ variance bounding
» Let m = 23" h(8;) - Markov kernel P is variance bounding if
Varp(M) is " reasonably small”

@ nor geometrically ergodic (GE) i.e ||P™(6g,-) — masc(-)||7v < Cp™
where p < 1. Markov kernels that are not GE may convergence
extremely slowly.

whereas P;;: is (subject to conditions).
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Note that Pipi requires significantly more computation per iteration (but
this may be worth it)




Recent developments - Lee 2012

1-hit MCMC kernel - Pl;,,-t((?g_. )
1 Propose &' ~ q(6:, -)
2 With probability

1 — min (1 q(¥, ﬂt)ﬂ(gx))

" q(6:,0")m(6:)

set Op41 = 0

3 Sample x’ ~ 7(-|0") and x ~ 7(-|8:) until p(x’, D) < € or
p(x,D) <e.

4 If p(x’,D) < € set 11 = 0’ otherwise set 0,1 = 6;




Recent developments

Lee et al. 2013 showed P, is neither
@ variance bounding

» Let m = 23" h(8;) - Markov kernel P is variance bounding if
Varp(M) is " reasonably small”
@ nor geometrically ergodic (GE) i.e ||P™(6g,-) — masc(-)||7v < Cp™
where p < 1. Markov kernels that are not GE may convergence
extremely slowly.

whereas P;;: is (subject to conditions).
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Note that Pipi requires significantly more computation per iteration (but
this may be worth it)




Importance sampling GABC

In uniform ABC, importance sampling simply reduces to the rejection
algorithm with a fixed budget for the number of simulator runs.

But for GABC it opens new algorithms:
GABC - Importance sampling

1 6; ~ w(@) and X; ~ 7(x|6;).

2 Give (0;, x;) weight w; = 7.(D|x;).




Importance sampling GABC

In uniform ABC, importance sampling simply reduces to the rejection
algorithm with a fixed budget for the number of simulator runs.

But for GABC it opens new algorithms:
GABC - Importance sampling

1 6; ~ w(@) and X; ~ 7(x|6;).

2 Give (6;, x;) weight w; = 7.(D|x;).

Which is more efficient - IS-GABC or Rej-GABC?

Proposition 2
IS-GABC has a larger effective sample size than Rej-GABC, or equivalently

VarRej (w) = Varg(w)

This can be seen as a Rao-Blackwell type result.




Rejection Control (RC)

A difficulty with IS algorithms is that they can require the storage of a
large number of particles with small weights.

@ thin particles with small weights using rejection control:
Rejection Control in IS-GABC

Q 6; ~ n(0) and X; ~ w(X|6;)
© Accept (6;, X;) with probability

) WE(D[X,-))

r(X;) = min ( —

for any threshold constant C > 0.
© Give accepted particles weights

w; = max(mw(D|X;), C)

IS is more efficient than RC, unless we have memory constraints (relative
to processor time).




Importance sampling GABC

In uniform ABC, importance sampling simply reduces to the rejection
algorithm with a fixed budget for the number of simulator runs.

But for GABC it opens new algorithms:
GABC - Importance sampling

1 6; ~ w(@) and X; ~ 7(x|6;).

2 Give (0;, x;) weight w; = 7.(D|x;).

Which is more efficient - IS-GABC or Rej-GABC?

Proposition 2
IS-GABC has a larger effective sample size than Rej-GABC, or equivalently

VarRej (w) = Varg(w)

This can be seen as a Rao-Blackwell type result.




Rejection Control (RC)

A difficulty with IS algorithms is that they can require the storage of a
large number of particles with small weights.

@ thin particles with small weights using rejection control:
Rejection Control in IS-GABC

Q@ 0; ~ w(#) and X; ~ w(X|6;)
© Accept (0;, X;) with probability

P T (L ?rf(ri_[x,-))

for any threshold constant C > 0.
© Give accepted particles weights

w; = max(m(D|X;), C)

IS is more efficient than RC, unless we have memory constraints (relative
to processor time).
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Sequential ABC algorithms

The most popular efficient ABC algorithms are those based on sequential
methods (Sisson et al. 2007, Toni et al. 2008, Beaumont et al. 2009, ....).

We aim to sample N particles successively from a sequence of distributions

m1(8), ..., m7r(0) = target

For ABC we decide upon a sequence of tolerances €1 > €2 > ... > e and
let m+ be the ABC distribution found by the ABC algorithm when we use
tolerance e;.




Specifically, define a sequence of target distributions

me(Dx)(x0)7(6) _ ~¢(6.)
Ce C

(0, x) =

with 7(D|X) = .. (D| X)

Posterior

Picture from Toni and Stumpf 2010 tutorial




At each stage t, we aim to construct a weighted sample of particles that
approximates (0, x).

{(zt(’-), W}j}) }N such that 7:(z) ~ Z W5 () (dz)

=1 ZEF]

where zf) = (95”_.;:5”).
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Picture from Toni and Stumpf 2010 tutorial




Specifically, define a sequence of target distributions

me( Dlx)m(x[8)7(8) _ 7e(6.x)
Ce C,

(0, x) =

with 7(D|X) = .. (D| X)

Posterior

Picture from Toni and Stumpf 2010 tutorial




At each stage t, we aim to construct a weighted sample of particles that
approximates (8, x).

{( ), W( }) };_1 such that 7(z) =~ Z W’-‘U}ézﬁﬂ(dz)

where z( ) (9( 2 )

Population 1 Population 2 Population T
€1 €2 er

Picture from Toni and Stumpf 2010 tutorial




Toni et al. (2008)

Assume we have a cloud of weighted particles {(6;, w;)}™~_; that were
accepted at step t — 1.

© Sample # from the previous population according to the weights.
© Perturb the particles according to perturbation kernel g;. l.e.,

6 ~ q:(6, )
© Reject particle immediately if # has zero prior density, i.e., if
m(f) =0

© Otherwise simulate X ~ f(#) from the simulator. If
p(S5(X),S5(D)) < €; accept the particle, otherwise reject.
© Give the accepted particle weight

__ (d)
Ze,-fh(gieg)

© Repeat steps 1-5 until we have N accepted particles at step t.




Sequential Monte Carlo (SMC)

All the SMC-ABC algorithms can be understood as special cases of Del
Moral et al. 2006.

If at stage t we use proposal distribution 7:(z) for the particles, then we
create the weighted sample as follows:

Generic Sequential Monte Carlo - stage n
(i) Fori=1

Zrm ~ ne(z)

and correct between 7, and 7,

(ii) Normalize to find weights {w,f"]}_
(iii) If effective sample size (ESS) is less than some threshold T,
resample the particles and set Wt(') =1/N. Sett=1t+ 1.
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Assume we have a cloud of weighted particles {(6;, w;)}~_; that were
accepted at step t — 1.

© Sample # from the previous population according to the weights.
© Perturb the particles according to perturbation kernel g;. l.e.,

6 ~ q:(6, )
© Reject particle immediately if # has zero prior density, i.e., if
m(f) =0

© Otherwise simulate X ~ f(#) from the simulator. If
p(S(X),S(D)) < €; accept the particle, otherwise reject.
© Give the accepted particle weight

__d)
Ze,-fr't(gi-.g)

O Repeat steps 1-5 until we have N accepted particles at step t.




Sequential Monte Carlo (SMC)
All the SMC-ABC algorithms can be understood as special cases of Del
Moral et al. 2006.

If at stage t we use proposal distribution 7:(z) for the particles, then we
create the weighted sample as follows:

Generic Sequential Monte Carlo - stage n
(i) Fori =1

Zrm ~ ne(2)

and correct between 7, and

(ii) Normalize to find weights {Wg”}.
(iii) If effective sample size (ESS) is less than some threshold T,
resample the particles and set Wt(') =1/N. Sett=1t+ 1.

W
T CRN




Del Moral et al. SMC algorithm

We can build the proposal distribution nt(z) from the particles available
at time t — 1.

One way to do this is to propose new particles by passing the old particles
through a Markov kernel g:(z,z’).
e Fori=1,

2 ~ qi(2$),, )

This makes 1¢(z) = [ n:—1(2")q:(Z’, z)dz" — which is unknown in general.

Del Moral et al. 2006 showed how to avoid this problem by introducing a
sequence of backward kernels, L;_;.




GABC versions of SMC

We need to choose
@ Sequence of targets 7

Forward perturbation kernels K,

> |
@ Backward kernels L,
=]

Thresholds c;.

By making particular choices for these quantities we can recover many of
the published SMC-ABC samplers.




Other sequential GABC algorithms

We can combine SMC with MCMC type moves, by using

TTr—l(Zt—l)Qt(Zt—la Zt)

Wt-th(Zt)

Lr—l(zt-. Zt—l) =

If we then use a 7 invariant Metropolis-Hastings kernel Q; and let

Wr(zt—l) Qt(zt—l-. Zr)
we(z¢)

then we get an ABC resample-move algorithm.

Lt—l(zt-, Zt—l) =




Approximate Resample-Move (with PRC)

RM-GABC
(i) While ESS < N

(a) Sample z* = (6%, X*) from {.;:]Ef1 according to weights Wz{i}r
(b) Weight: :

me( D| X*)
me—1(D|X*)

(c) PRC: With probability min(1, ";—:). sample

W* — ﬁt(x*) —

20 . Q"))
where @Q; is an MCMC kernel with invariant distribution 7. Set
I=i+4+ L

Otherwise, return to (i)(a).

(i) Normalise the weights to get Wt("). Setn=n+1

Note that because the incremental weights are independent of z, we are
able to swap the perturbation and PRC steps.

=an ==,




Conclusions

@ The tolerance € controls the accuracy 'of ABC algorithms, and so we

desire to take € as small as possible in many problems (although not
always).

@ By using efficient sampling algorithms, we can hope to better use the

available computation resource to spend more time simulating in
regions of parameter space likely to lead to accepted values

@ MCMC and SMC versions of ABC have been developed, along with
ABC versions of most other algorithms.




Links to other approaches




History-matching

e.g. Craig et al. 2001, Vernon et al. 2010
ABC can be seen as a probabilistic version of history matching. History
matching is used in the analysis of computer experiments to rule out
regions of space as implausible.

1 Relate the simulator to the system
C=1F(0)+e€

where € is our simulator discrepancy

2 Relate the system to the data (e represents measurement error)

D=(+e
3 Declare 6 implausible if, e.g.,

| D —Ef(0) |> 30

where o2 is the combined variance implied by the emulator,

discrepancy and measurement error.




History-matching

If @ is not implausible we don't discard it. The result is a region of space
that we can’t rule out at this stage of the history-match.

Usual to go through several stages of history matching.
Notes:

@ History matching can be seen as a principled version of ABC - lots of
thought goes into the link between simulator and reality.
@ The result of history-matching may be that there is no
not-implausible region of parameter space
» Go away and think harder - something is misspecified

» This can also happen in rejection ABC.
» In contrast, MCMC will always give an answer, even if the model is

terrible.
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D=(+e
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where o2 is the combined variance implied by the emulator,

discrepancy and measurement error.




History-matching

If @ is not implausible we don't discard it. The result is a region of space
that we can’t rule out at this stage of the history-match.

Usual to go through several stages of history matching.
Notes:

@ History matching can be seen as a principled version of ABC - lots of
thought goes into the link between simulator and reality.

@ The result of history-matching may be that there is no
not-implausible region of parameter space
» Go away and think harder - something is misspecified
» This can also happen in rejection ABC.
» In contrast, MCMC will always give an answer, even if the model is
terrible.




Noisy-ABC
Fearnhead and Prangle (2012) proposed the noisy-ABC algorithm:

Noisy-ABC

Initialise: Let D' = D + e where e ~ K(e) from some kernel K(-).
1 6; ~m(f#) and X; ~ w(x|6;). |
2 Give (9;,){‘,’) weight w; = K(X,' — D’).

In our notation, replace the observed data D, with D’ drawn from the
acceptance kernel - D’ ~ 7w(D’| D)




Noisy ABC

Noisy ABC is well calibrated. However, this is a frequency property, and
so it only becomes relevant if we repeat the analysis with different D’
many times

@ highly relevant to filtering problems
Note that noisy ABC and GABC are trying to do different things:

@ Noisy ABC moves the data so that it comes from the model we are
assuming when we do inference.

» Assumes the model 7w(D|#) is true and tries to find the true posterior
given the noisy data.

@ GABC accepts the model is incorrect, and tries to account for this in
the inference.




Other algorithms

@ Wood 2010 is an ABC algorithm, but Eusing sample mean uy and
covariance X4 of the summary of f(#) run n times at #, and assuming

w(D|S) = N(D:; pe, L)

@ (Generalized Likelihood Uncertainty Estimation) GLUE approach of
Keith Beven in hydrology - see Nott and Marshall 2012

@ Kalman filtering, see Nott et al. 2012.




The dangers of ABC -

For every complex problem, there is an answer that is short,
simple and wrong

Why use ABC?

Idealism increases in direct proportion to ones distance from
the problem




Recap |

Uniform Rejection ABC
@ Draw 6@ from w(6)
@ Simulate X ~ f(6)
@ Accept A if p(D, X) < ¢

We've looked at a variety of more efficient sampling algorithms
@ eg. ABC-MCMC, ABC-IS, ABC-SMC

@ The higher the efficiency the smaller the tolerance we can use for a
given computational expense.




Recap ||

Alternative approaches focus on avoiding the curse of dimensionality:

@ If the data are too high dimensional we never observe simulations
that are ‘close’ to the field data




Recap ||

Alternative approaches focus on avoiding the curse of dimensionality:

@ If the data are too high dimensional we never observe simulations
that are ‘close’ to the field data

Approaches include

@ Using summary statistics S(D) to reduce the dimension

Uniform rejection ABC with summaries

Draw 6 from 7(0)
Simulate X ~ f(6)
Accept 8 if p(S(D),S(X)) <e€

If S is sufficient this is equivalent to the previous algorithm.

@ Regression adjustment - model and account for the discrepancy
between S = 5(X) and S, = S(D).




Regression Adjustment

References:
@ Beaumont et al. 2003
@ Blum and Francois 2010
@ Blum 2010
@ Leuenberger and Wegmann 2010




Regression Adjustment

An alternative to rejection-ABC, proposed by Beaumont et a/. 2002, uses
post-hoc adjustment of the parameter values to try to weaken the effect

of the discrepancy between s and sgps.

Two key ideas
@ use non-parametric kernel density estimation to emphasise the best
simulations

@ learn a non-linear model for the conditional expectation E(f|s) as a
function of s and use this to learn the posterior at sgps.




ldea 1 - kernel regression

Suppose we want to estimate

e 9??(9. 50.‘35)
E(fs = / do
( ‘ obs) W(Sobs)

using pairs {6;,s;} from (6. s)




Idea 1 - kernel regression

Suppose we want to estimate

-- 07 (8, Sobs)
E(8|s = / dé
( ‘ obs) ﬂ'(sobs)

using pairs {6;,s;} from (6. s)

Approximating the two densities using a kernel density estimate

H0.5) = - S K(s—s)KO—0)  #(s)= = 3 K(s— )

and substituting gives the Naradaya-Watson estimator:

e Z K(Sobs — 5!')9:'
E(O|s ~ =
(Blobs) > i K(sobs — si)

as [ yK(y — a)dy = a.




@ Beaumont et al. 2002 suggested using the Epanechnikov kernel

K.(x) [1 - (’—Eﬂ Le<e

as it has finite support - we discard the majority of simulations. They
recommend € be set by deciding on the proportion of simulations to
keep e.g. best 5%

This expression also arises if we view
{6;, W;}, with W; = Kc(sobs — Si) = Te(Sobs|Si)

as a weighted particle approximation to the posterior

7(0]s0bs) = Y _ widg,(6)

where w; = W;/ > W, are normalised weights

The Naradaya-Watson estimator suffers from the curse of
dimensionality - its rate of convergence drops rapidly as the
dimension of s increases.




ldea 1 - kernel regression

Suppose we want to estimate

- QTT(Q. 50.‘35)
E(8|s :f do
( ‘ obs) ﬁ-(sobs)

using pairs {6;,s;} from (6. s)

Approximating the two densities using a kernel density estimate

H0.5) = - S K(s—s)K(O—0)  #(s)= = 3 K(s— )

and substituting gives the Naradaya-Watson estimator:

e E K(Sobs — 5!')6:'
E(fs =~ L
( ' obs) E :,‘ K(Sobs - 5:')

as | yK(y — a)dy = a.




@ Beaumont et al. 2002 suggested using the Epanechnikov kernel
Ux<e

as it has finite support - we discard the majority of simulations. They
recommend € be set by deciding on the proportion of simulations to
keep e.g. best 5%

This expression also arises if we view
{9;. W,} with VV; — KE(Sobs - 5‘,‘) = ?TE(SO,:_-,5|S;)

as a weighted particle approximation to the posterior

7(0|s0bs) = Y _ widg,(6)

where w; = W;/ > W, are normalised weights

The Naradaya-Watson estimator suffers from the curse of
dimensionality - its rate of convergence drops rapidly as the
dimension of s increases.




|dea 2 - regression adjustments

Consider the relationship between the conditional expectation of # and s:
E(f|s) = m(s)
Think of this as a model for the conditional density 7(6|s): for fixed s

B; = m(s) + e

where #; ~ m(#|s) and e; are zero-mean and uncorrelated




Ildea 2 - regression adjustments

Consider the relationship between the conditional expectation of # and s:
E(f|s) = m(s)

Think of this as a model for the conditional density 7(6|s): for fixed s
B; = m(s) + e

where #; ~ m(#|s) and e; are zero-mean and uncorrelated

Suppose we've estimated m(s) by m(s) from samples {6;,s;}.

Estimate the posterior mean by

E(9|50bs) ~ ﬁ(sobs)

and assuming constant variance (wrt s), we can form the empirical
residuals

@.-' = [9." — "ﬁ(sf)
and approximate the posterior m(f|syps) by adjusting the parameters

07 = m(sops) + € = 0 + (M(sops) — M(s;))




ABC and regression adjustment
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In rejection ABC, the red points are used to approximate the histogram.




ABC and regression adjustment
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In rejection ABC, the red points are used to approximate the histogram.
Using regression-adjustment, we use the estimate of the posterior mean at
Sobs and the residuals from the fitted line to form the posterior.




Models

Beaumont et al. 2003 used a local linear model for m(s) in the vicinity of
Sobs

m(s;) = a+ 37s;

fit by minimising

> "(8; — m(si))?Ke(si — Sobs)

so that observations nearest to s,ps are given more weight in the fit.




Models

Beaumont et al. 2003 used a local linear model for m(s) in the vicinity of
Sobs

m(s))=a+3"s;

fit by minimising

> "(8; — m(si))?Ke(si — Sobs)

so that observations nearest to syps are given more weight in the fit.

The empirical residuals are then weighted so that the approximation to
the posterior is a weighted particle set

{9:‘ VV; — K (S,’ = Sobs)}
77(9|50bs)'_' Sbbs EE: “ﬁgﬂ (6




Normal-normal conjugate model, linear regression

Posteriors

—  True
Regression adjusted

Density

200 data points in both approximations. The regression-adjusted ABC
gives a more confident posterior, as the #; have been adjusted to account

for the discrepancy between s; and sgps




Extensions: Non-linear models

Blum and Francois 2010 proposed a nonlinear heteroscedastic model

0; = m(s;) +o(sy)e

where m(s) = E(f|s) and o%(s) = Var(fA|s). They used feed-forward
neural networks for both the conditional mean and variance.

o = m(sabs)_i_

!

Picture from Michael Blum, www.ceremade.dauphine. frsissy4PTH= pdf




Models

Beaumont et al. 2003 used a local linear model for m(s) in the vicinity of
Sobs

m(s;))=a+3"s;

fit by minimising

> "(8; — m(si))?Ke(si — Sobs)

so that observations nearest to syps are given more weight in the fit.

The empirical residuals are then weighted so that the approximation to
the posterior is a weighted particle set

{07, W; = Kc(s; — Sobs) }
77(9|50bs)'_' Sbbs EE: “ﬁﬂﬁ (6




ABC and regression adjustment
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In rejection ABC, the red points are used to approximate the histogram.
Using regression-adjustment, we use the estimate of the posterior mean at
Sobs and the residuals from the fitted line to form the posterior.




Extensions: Non-linear models

Blum and Francois 2010 proposed a nonlinear heteroscedastic model
0; = m(s;) +o(sy)e

where m(s) = E(f|s) and o%(s) = Var(A|s). They used feed-forward
neural networks for both the conditional mean and variance.

07 = m(50b5)+

!

('9;‘ o rﬁ(s;)) 5F(Sﬂbs)
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Picture from Michael Blum, www.ceremade.dauphine. frsissy 4Pt = pdf




Discussion

These methods allow us to use a larger tolerance values and can
substantially improve posterior accuracy with less computation.
However, sequential algorithms can not easily be adapted, and so
these methods tend to be used with simple rejection sampling.

Many people choose not to use these methods, as they can give poor
results if the model is badly chosen.

Modelling variance is hard, so transformations to make the # = m(s)
as homoscedastic as possible (such as Box-Cox transformations) are
usually applied

Blum 2010 contains estimates of the bias and variance of these
estimators. They show the properties of the ABC estimators may
seriously deteriorate as dim(s) increases ...




Summary Statistics

References
@ Bilum, Nunes, Prangle and Sisson 2012
Joyce and Marjoram 2008
Nunes and Balding 2010
Fearnhead and Prangle 2012
Robert et al. 2011




Error trade-off

Blum, Nunes, Prangle, Fearnhead 2012
The error in the ABC approximation can be broken into two parts

© Choice of summary:

=(0|D) = =(0|S(D))




Error trade-off

Blum, Nunes, Prangle, Fearnhead 2012
The error in the ABC approximation can be broken into two parts

© Choice of summary:

=(6|D) = 7(|S(D))

@ Use of ABC acceptance kernel:

5

(60| Sobs )= maBC(0|Sobs) = /rr(f).stsobg)ds

X [ me(Sobs|S(x))m(x|@)m(0)dx




Error trade-off

Blum, Nunes, Prangle, Fearnhead 2012
The error in the ABC approximation can be broken into two parts

© Choice of summary:

7(8|D) = 7(6|S(D))

@ Use of ABC acceptance kernel:

5

(60| Sobs )= maBC(0|Sobs) = /fr(ﬂ.stsobg)ds

% /ﬁf(sob5|5(x))w(x9)ﬁ(9)dx

The first approximation allows the matching between S(D) and S(X) to
be done in a lower dimension. There is a trade-off

@ dim(S) small: 7(@|sops) = Tac(8|Sobs). but m(0|soss) % 7(8|D)
@ dim(S) large: m(0|sops) = w(O|D) but 7(8|sess) % Tasc(8|Sobs)

as curse of dimensionality forces us to use larger ¢




Choosing summary statistics

If S(D) = s,ps is sufficient for 6, i.e., syps contains all the information
contained in D about #

m(6|sops) = (6| D),

then using summaries has no detrimental effect




Choosing summary statistics

If S(D) = s,ps is sufficient for 6, i.e., syps contains all the information
contained in D about #

m(6|sops) = T(6|D),

then using summaries has no detrimental effect
However, low-dimensional sufficient statistics are rarely available. How do

we choose good low dimensional summaries?




Automated summary selection
Blum, Nunes, Prangle and Fearnhead 2012

Suppose we are given a candidate set S = (s;
which to choose.

sp) of summaries from

Methods break down into groups.

@ Best subset selection

» Joyce and Marjoram 2008
» Nunes and Balding 2010

@ Projection

» Blum and Francois 2010
» Fearnhead and Prangle 2012

@ Regularisation techniques
» Blum, Nunes, Prangle and Fearnhead 2012




Best subset selection

Introduce a criterion, e.g,

@ 7-sufficiency (Joyce and Marjoram 2008): s;.,_1 are T-sufficient
relative to s, if

dx = sup log m(sk|s1.4—1,0) — ir.;f log m(sk|S1:k—1, )
8

- fangeg(ﬂ(51:k|9) — (S1:6—110)) £ 7T

I.e. adding s, changes posterior sufficiently.
@ Entropy (Nunes and Balding 2010)

Implement within a search algorithm such as forward selection.
Problems:

@ assumes every change to posterior is beneficial (see below)

@ considerable computational effort required to compute 9,




Projection

Several statistics from & may be required to get same info content as a
single informative summary.

@ project S onto a lower dimensional highly informative summary vector




Best subset selection

Introduce a criterion, e.g,

@ 7-sufficiency (Joyce and Marjoram 2008): s;.,_1 are T-sufficient
relative to s, if

dx = sup log m(sk|s1.4—1,0) — ir.;f log m(sk|S1:k—1,6)
7

= rangeyg(m(s1.4|0) — m(s1.4-110)) < T

I.e. adding s, changes posterior sufficiently.
@ Entropy (Nunes and Balding 2010)

Implement within a search algorithm such as forward selection.
Problems:

@ assumes every change to posterior is beneficial (see below)

@ considerable computational effort required to compute 9,
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Most authors aim to find summaries so that

magc(f|s) = w(6|D)

Fearnhead and Prangle 2012 weaken this requirement and instead aim to
find summaries that lead to good parameter estimates.




Projection
Several statistics from & may be required to get same info content as a
single informative summary:.

@ project S onto a lower dimensional highly informative summary vector

Most authors aim to find summaries so that
magc(f|s) = w(6|D)

Fearnhead and Prangle 2012 weaken this requirement and instead aim to
find summaries that lead to good parameter estimates.

They seek to minimise the expected posterior loss

E((B¢rue — 0)?|D) = 6 = E(8|D)

They show that the optimal summary statistic is

s = E(6|D)




Fearnhead and Prangle 2012

However, E(#|D) will not usually be known.

Instead, we can estimate it using the model

0; = E(0|D) + e = BT f(s;) + e

where f(s) is a vector of functions of & and (#;,s;) are output from a
pilot ABC simulation. They choose the set of regressors using, e.g., BIC.




Fearnhead and Prangle 2012

However, E(#|D) will not usually be known.

Instead, we can estimate it using the model
0; = E(0|D) + e; = BT f(s;) + e

where f(s) is a vector of functions of S and (#;,s;) are output from a
pilot ABC simulation. They choose the set of regressors using, e.g., BIC.

They then use the single summary statistic

s = BTF(s)

for 6.

Advantages
@ Scales well with large p and gives good point estimates.
Disadvantages

@ Summaries usually lack interpretability and method gives no
guarantees about the approximation of the posterior.




Summary warning:

Automated methods are a poor replacement for expert knowledge.

@ Instead of automation, ask what aspects of the data do we expect
our model to be able to reproduce? S(D) may be highly informative
about #, but if the model was not built to reproduce S(D) then why

should we calibrate to it?
» For example, many dynamical systems models are designed to model
periods and amplitudes. Summaries that are not phase invariant may

be informative about #, but this information is uninformative.
In the case where models and/or priors are mis-specified, this
problem can be particularly acute.




Model selection
Wilkinson 2007, Grelaud et a/. 2009

Ratmann et al. 2009 proposed methodology for testing the fit of a model
without reference to other models.

But often we want to compare models — Bayes factors

o W(DIM]_)

| = —
27 7(DIMy)

where m(D|M;) = [ we(D|x)m(x|0, M;)m(8)dxdé




Model selection
Wilkinson 2007, Grelaud et a/. 2009

Ratmann et al. 2009 proposed methodology for testing the fit of a model
without reference to other models.

But often we want to compare models — Bayes factors

W(D|M1)
7(D|M>)

Bix =

where m(D|M;) = [ w(D|x)m(x|0, M;)m(8)dxdé
For rejection ABC

(D) =~ % Y me(D|x;)

which reduces to the acceptance rate for uniform ABC (Wilkinson 2007).

Or add an initial step into the rejection algorithm where we first pick a
model - compare the ratio of acceptance rates to directly target the BF.

See Toni et al. 2009 for an SMC-ABC approach.




Summary statistics for model selection

Didelot et al. 2011, Robert et a/. 2011
Care needs to be taken with regard summary statistics for model selection.
Everything is okay if we target

m(S(D)|M)

55 = 2(5(D) M)

Then the ABC estimator B¢ — Bs as € — 0. N — o (Didelot et al.
2011).
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Care needs to be taken with regard summary statistics for model selection.
Everything is okay if we target

_ 7(S(D)|My)
=(S(D)[Mo)

Bs

Then the ABC estimator B¢ — Bs as € — 0. N — o (Didelot et al.
2011).

However,
m(S(D)|My) , m(D|M1)

m(S(D)IM2) © m(D|M2)
even if S is a sufficient statistic! S sufficient for A(D|6#1) and f2(D|67)
does not imply sufficiency for {m, f,(D|0m)}. Hence BS 4 Bp
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Summary statistics for model selection

Didelot et al. 2011, Robert et a/. 2011
Care needs to be taken with regard summary statistics for model selection.

Everything is okay if we target

_ 7(S(D)|My)
=(S(D)[Mo)

Bs

Then the ABC estimator B¢ — Bs as € — 0. N — o (Didelot et al.
2011).

However,
m(S(D)M1) , =(D|M1)

m(S(D)|M2) © m(D|Ma)

even if S is a sufficient statistic! S sufficient for A(D|6#1) and f2(D|67)
does not imply sufficiency for {m, f,(D|6m)}. Hence BS 4 Bp

Note - no problem if we view inference as conditional on a carefully
chosen S.

See Prangle et al. 2013 for automatic selection of summaries for model
selection.

- Bp




Choice of metric p

Consider the following system

Xer1 = F(X:) + N(O, 0?)
Y, = g(X:) + N(0,72)

where we want to estimate measurement error 7 and model error o.
Default choice of metric (or similar)

p(Y.yo) =) (v — Y2)?

or CRPS (a proper scoring rule)

Py, F() = 3 arps(ye®, Fi()) = 3 [ (Filw) = L<u)du

where F;(-) is the distribution function of Y;|y1.t—1.
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Didelot et al. 2011, Robert et a/. 2011
Care needs to be taken with regard summary statistics for model selection.

Everything is okay if we target

_ 7(S(D)|My)
=(S(D)[Mo)

Bs

Then the ABC estimator B — Bs as € — 0. N — o (Didelot et al.
2011).

However,
m(S(D)|My) , m(D|My)

m(S(D)|Mz) © w(D|M2)

even if S is a sufficient statistic! S sufficient for A(D|6#1) and f2(D|67)
does not imply sufficiency for {m, f,,(D|6m)}. Hence BS 4 Bp

Note - no problem if we view inference as conditional on a carefully
chosen S.

See Prangle et al. 2013 for automatic selection of summaries for model
selection.

- Bp
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Consider the following system

Xer1 = F(X:) + N(O, o?)
Y, = g(X:) + N(0,72)

where we want to estimate measurement error 7 and model error o.
Default choice of metric (or similar)

p(Y.y) = (v — Y;)?

or CRPS (a proper scoring rule)
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where F;:(-) is the distribution function of Y:|y1.+—1.
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Choice of metric p

Consider the following system

Xer1 = F(X:) + N(O, o?)
Y: = g(X¢) + N(0,72)

where we want to estimate measurement error 7 and model error o.
Default choice of metric (or similar)

p(Y.y%%) = (v — V)

or CRPS (a proper scoring rule)

Py F() = 3 crps(ye®, Fi()) = 3 [ (Fiw) ~ L<u)du

where F;(-) is the distribution function of Y;|y1.t—1.







GP-accelerated ABC




Problems with Monte Carlo methods

Monte Carlo methods are generally guaranteed to succeed if we run them
for long enough.

This guarantee comes at a cost.

@ Most methods sample naively - they don’'t learn from previous
simulations.

@ They don’t exploit known properties of the likelihood function, such
as continuity
@ They sample randomly, rather than using space filling designs.

This naivety can make a full analysis infeasible without access to a large
amount of computational resource.




Likelihood estimation

The GABC framework assumes

m(D|6) = [ (D|X)m(X|6)dX

Y =(D|X;)

where X; ~ w(X|8).




Likelihood estimation

The GABC framework assumes

=(D|6) /W(D|X)7T(X|9)dx

%ZW(D!X;)

where X; ~ w(X|8).

For many problems, we believe the likelihood is continuous and smooth,
so that 7(D|#) is similar to w(D|#’) when 8 — #’ is small

We can model L(f) = 7m(D|#) and use the model to find the posterior in
place of running the simulator.




History matching waves

The likelihood is too difficult to model, so we model the log-likelihood
Instead.

G(0) = log L(6), L(6;) = %Zn(mx,-), Xi ~ m(X16;)

However, the log-likelihood for a typical problem ranges across too wide a
range of values.

Consequently, any Gaussian process model will struggle to model the
log-likelihood across the entire input range.
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MCMC Results

Wood’s MCMC posterior Green = GP posterior

Density
2 3 4567

1

0

Black = Wood’'s MCMC
&




Computational details

@ The Wood MCMC method used 10° x 500 simulator runs
@ The GP code used (128 + 314 + 149 + 400) = 991 x 500 simulator

runs
» 1/100th of the number used by Wood's method.

By the final iteration, the Gaussian processes had ruled out over 98% of

the original input space as implausible,

@ the MCMC sampler did not need to waste time exploring those
regions.




Conclusions
ABC allows inference in models for which it would otherwise be
impossible.
@ not a silver bullet - if likelihood methods possible, use them instead.

Algorithms and post-hoc regression can greatly improve computational
efficiency, but computation is still usually the limiting factor.

@ Challenge is to develop more efficient methods to allow inference in
more expensive models.
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Automatic summary selection and dimension reduction
Improved modelling in regression adjustments
Learning of model error 7. (D|X)

Accelerated inference via likelihood modelling
Use of variational methods




Conclusions
ABC allows inference in models for which it would otherwise be
impossible.
@ not a silver bullet - if likelihood methods possible, use them instead.

Algorithms and post-hoc regression can greatly improve computational
efficiency, but computation is still usually the limiting factor.

@ Challenge is to develop more efficient methods to allow inference in
more expensive models.

Areas for improvement (particularly those relevant to ML)?
@ Automatic summary selection and dimension reduction
@ Improved modelling in regression adjustments
Learning of model error w.(D|X)
Accelerated inference via likelihood modelling
Use of variational methods

Thank you for listening!

r.d.wilkinson@nottingham.ac.uk, www.maths.nottingham.ac.uk/personal /pmzrdw/
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History matching waves

The likelihood is too difficult to model, so we model the log-likelihood
instead.

G(6) = logL(6),  L(6;) = %Zw(mx,-y X; ~ w(X|6;)

However, the log-likelihood for a typical problem ranges across too wide a
range of values.

Consequently, any Gaussian process model will struggle to model the
log-likelihood across the entire input range.

@ Introduce waves of history matching, similar to those used in Michael
Goldstein's work.

@ In each wave, build a GP model that can rule out regions of space as
implausible.




Likelihood estimation

The GABC framework assumes

w(D|6) :/W(D|X)W(X|€)dx

1
- Y =(D|X;)
where X; ~ 7(X|8).

For many problems, we believe the likelihood is continuous and smooth,
so that w(D|#) is similar to 7w(D|6’') when 6 — ¢’ is small

We can model L(f#) = w(D|#) and use the model to find the posterior in
place of running the simulator.
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range of values.

Consequently, any Gaussian process model will struggle to model the
log-likelihood across the entire input range.
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instead.

G(6) = logL(6),  L(6;) = %Zw(mx,-), X; ~ m(X|6;)

However, the log-likelihood for a typical problem ranges across too wide a
range of values.

Consequently, any Gaussian process model will struggle to model the
log-likelihood across the entire input range.

@ Introduce waves of history matching, similar to those used in Michael
Goldstein's work.

@ In each wave, build a GP model that can rule out regions of space as
implausible.




Problems with Monte Carlo methods

Monte Carlo methods are generally guaranteed to succeed if we run them
for long enough.

This guarantee comes at a cost.
@ Most methods sample naively - they don't learn from previous
simulations.
@ They don't exploit known properties of the likelihood function, such
as continuity
@ They sample randomly, rather than using space filling designs.

This naivety can make a full analysis infeasible without access to a large
amount of computational resource.




Likelihood estimation

The GABC framework assumes

w(D|6) =/r(D|X)7r(X|9)dX

~ £ 3 (DIX)

where X; ~ 7(X|0).




