Microsoft Research

Each year Microsoft Research hosts hundreds of
influential speakers from around the world
including leadling scientists, renowned experts in
technology, book authors, and leading academics
and makes videos of these lectures freely available.
2013 © Microsoft Corporation. All rights reserved.



Deep Learning
for
Computer Vision

NIPS 2013 Tutorial

Rob Fergus

Dept. of Computer Science
New York University




Overview

* Primarily about object recognition, using
supervised ConvINet models

* Focus on natural images

— Rather than digits
— Classification & Detection

* Brief discussion of
other vision problems




Motivation



Existing Recognition Approach

.....................................................................................

e Features are not learned

* Trainable classifier is often generic (e.g. SVM)



Motivation

* Features are key to recent progress in recognition

* Multitude of hand-designed features currently in use
— SIFT, HOG, LBP, MSER, Color-SIFT.............

* Where next? Better classifiers? Or keep building more features?
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D Yan & Huang
Felzenszwalb, Girshick, (Winner of PASCAL 2010 classification competition)
McAllester and Ramanan, PAMI 2007



What Limits Current Performance?

.....................................................................................

 Ablation studies on Deformable Parts Model
— Felzenszwalb, Girshick, McAllester, Ramanan, PAMI'10

* Replace each part with humans (Amazon Turk):

Pari Zitnick, CVPR’10



Hand-Crafted Features

« LP-B Multiple Kernel Learning

— Gehler and Nowozin, On Feature Combination

for Multiclass Object Classification, ICCV’09

e 39 different kernels

— PHOG, SIFT, V1S+,
Region Cov. Etc.
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What about Learning the Features?

* Perhaps get better performance?
* Deep models: hierarchy of feature extractors
* All the way from pixels = classifier

* One layer extracts features from output of previous layer

Image/Video
Pixels

* 'Train all layers jointly

Simple
Classifier




Deep
Learning
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Multistage Hubel-Wiesel Architecture

Slide: Y.LeCun

* [Hubel & Wiesel 1962]

* simple cells detect local features

* complex cells “pool” the outputs of
simple cells within a retinotopic
neighborhood.
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Cognjtron eocognitron
[Fukushima 1971-1982]

Convolutional Networks
- AlSO I—HVIAX [Pﬂggiﬂ 2002-2006] [LCCUH 1988_present]



Convolutional Neural Networks

.....................................................................................

e [LeCun etal. 1989

* Neural network with specialized
connectivity structure




Recap of Convnets

.....................................................................................

Feature maps

* Feed-forward:

— Convolve input

— Non-linearity (rectified linear) Pooling
— Pooling (local max)
* Supervised Non-linearity

* 'Train convolutional filters by
back-propagating classification error [EEIVCIIELIILER)
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Input Image

[LeCun et al. 1989]



Convnet Successes

* Handwritten text/digits
— MNIST  (0.17% error [Ciresan et al. 2011])
— Arabic & Chinese [Ciresan et al. 2012]




Convnet Successes

* Handwritten text/digits
— MNIST  (0.17% error [Ciresan et al. 2011])
— Arabic & Chinese [Ciresan et al. 2012]
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* Simpler recognition benchmarks
— CIFAR-10 (9.3% error [ Wan et al. 2013])

— Traffic sign recognition |-
* 0.56% error vs 1.16% for humans [Ciresan et al. 2011] 1YW &3




Convnet Successes

&

* Handwritten text/digits
— MNIST  (0.17% error [Ciresan et al. 2011])
— Arabic & Chinese [Ciresan et al. 2012]
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* Simpler recognition benchmarks
— CIFAR-10 (9.3% error [ Wan et al. 2013])

— Traffic sign recognition |
* 0.56% error vs 1.16% for humans [Ciresan et al. 2011] _

* But (until recently) less good at
more complex datasets

— E.g. Caltech-101/256 (few training examples)




Application to ImageNet

.....................................................................................

VIS GE N

* ~14 million labeled images, 20k classes
* Images gathered from Internet

e Human labels via Amazon Turk

[Deng et al. CVPR 2009]



Application to ImageNet

.....................................................................................

VI GE N

* ~14 million labeled images, 20k classes
* Images gathered from Internet

« Human labels via Amazon Turk

[Deng et al. CVPR 2009]

ImageNet Classification with Deep Convolutional
Neural Networks [NIPS 2012]

Geoffrev E. Hinton




Krizhevsky et al. [NIPS2012]

-------------------------------------------------------------------------------------

* Same model as LeCun’98 but:
- Bigger model (8 layers)
- More data (10° vs 10° images)

- GPU implementation (50x speedup over CPU)
- Better regularization (DropOut)

* 7 hidden layers, 650,000 neurons, 60,000,000 parameters
* Trained on 2 GPUs for a week



ImageNet Classification 2012
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* Krizhevsky et al. -- 16.4% error (top-5)
* Next best (non-convnet) — 26.2% error
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Commercial Deployment

-------------------------------------------------------------------------------------

* Google & Baidu, Spring 2013 for personal

image search




Large Convnets
for
Image Classification



Large Convnets for Image
Classification

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

* Operations in each layer
* Architecture
* Training

 Results



Components of Each Layer
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Pixels / -
Features

[Optional]
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Components of Each Layer

..................................................................................

Pixels / ’ FL.lte?' with " Il " l + Non-linearity
Dictionary | ‘[f--
Features (convolutional 3 . = = ‘ l >
%)
Spatial/Feature
(Sum or Max)
Normalization
S S - Output Features

feature ICSpPOnscs



Compare: SIFT Descriptor

Image

Pixels -

Apply
Gabor filters




Compare: SIFT Descriptor

........................................................................
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Compare: SIFT Descriptor

...................................................................................

' 4 0 | )
TAVAN

| Apply

Pixels

Spatial pool
(Sum)
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Vector

Normalize to
unit length




Compare: Spatial Pyramid Matching

SIFT -
Features

Filter with i o nl

Visual Words ~ ESIE N 8

e ——

Lazebnik,
Schmid,

Ponce

[CVPR 2006]



Compare: Spatial Pyramid Matching

SIFT -
Features

Filter with i . nl

Visual Words :n he
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- .

Lazebnik,
Schmid,

Ponce

[CVPR 2006]



Compare: Spatial Pyramid Matching

/ , Lazebnik,
SIFT ‘ - Filter with F o ‘! : chf;fé
Features | Visual Words I B e [CVPR 2006]
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* Convolutional
— Dependencies are local
— Translation equivariance
— Tied filter weights (few params)
— Stride 1,2,... (faster, less mem.)
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* Convolutional

— Dependencies are local

— Translation equivariance

— Tied filter weights (few params)

— Stride 1,2,... (faster, less mem.)

Feature Map



e Tiled
— Filters repeat every n
— More filters than

convolution for given
# features
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convolution for given
# features




e Tiled
— Filters repeat every n

— More filters than
convolution for given
# features




e Tiled
— Filters repeat every n
— More filters than

convolution for given
# features

Feature maps



Non-Linearity
* Non-linearity

— Per-feature independent

— Sigmi'}id: l/(1+exp(—x))

* Simplifies backprop
* Makes learning faster

» Avoids saturation issues

—> Preferred option



* Spatial Pooling
— Non-overlapping / overlapping regions

— Sum or max

— Boureau et al. ICMUL'10 for theoretical analysis




* Spatial Pooling

— Non-overlapping / overlapping regions

— Sum or max

— Boureau et al. ICML10 for theoretical analysis




{| Pooling l

...................................................................................

* Pooling across feature groups

* Additional form of inter-feature competition
* MaxOut Networks [ Goodfellow et al. ICML 2013]




* Spatial Pooling

— Non-overlapping / overlapping regions

— Sum or max

— Boureau et al. ICMUL10 for theoretical analysis




| Pooling ]

* Pooling across feature groups

 Additional form of inter-feature competition
* MaxOut Networks [ Goodfellow et al. ICML 2013]




Role of Pooling

.....................................................................................

* Spatial pooling

— Invariance to small transformations

— Larger receptive fields

(see more of input)

Visualization technique from
[Le et al. NIPS'10]:

Zeiler, Fergus [arXiv 2013]

Videos from: http://ai.stanford.edu/~quocle/TCNNweb



* Contrast normalization

¢ See Divisive Normalization in Neuroscience




* Contrast normalization (between/across feature maps)
— Local mean = 0, local std. = 1, “Local” 2 7x7 Gaussian
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* Contrast normalization (between/across feature maps)
— Local mean = 0, local std. = 1, “Local” 2 7x7 Gaussian
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* Contrast normalization

¢ See Divisive Normalization in Neuroscience




* Contrast normalization (between/across feature maps)
— Local mean = 0, local std. = 1, “Local” =2 7x7 Gaussian
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* Contrast normalization

¢ See Divisive Normalization in Neuroscience




* Contrast normalization (between/across feature maps)
— Local mean = 0, local std. = 1, “Local” =2 7x7 Gaussian
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* Contrast normalization (between/across feature maps)
— Local mean = 0, local std. = 1, “Local” 2 7x7 Gaussian
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Role of Normalization

* Introduces local competition between features

— Poor man’s version of “Explaining away" in graphical models
— Just like top-down models

— But more local mechanism

* Also helps to scale activations at each layer better for learning
— Makes energy surface more isotropic

— So each gradient step makes more progress

* Empirically, seems to help a bit (1-2%) on ImageNet
— More on other datasets (see [ Jarrett et al. ICCV’09] for interesting analysis)



Architecture



Importance of Depth



Architecture of Krizhevsky et al.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Softmax Output

* 8 layers total

Layer 7: Full

= Layer 6: Full
* Trained on Imagenet

dataset [Deng et al. CVPR’09] Layer 5: Conv + Pool
Layer —*: Conv

18.2% top-5 error L

Layer 3: Conv

Layer 2: Conv + Pool

* Our reimplementation: :
181% top-S error Layer 1: Conv + Pool

Input Image




Architecture of Krizhevsky et al.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

* Remove top fully

connected layer

: Full
. Layer 7 Layer 6: Fu
Layer 5: Co-nv + Pool
¢ DI'()P 16 million Layer 4: Conv
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Layer 3: Conv
. Oﬂly 1.1% drop in Layer 2: Conv + Pool
| -]
performance. Layer 1: Conv + Pool

Input Image



Architecture of Krizhevsky et al.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Softmax Output

* 8 layers total

Layer 7: Full

> Layer 6: Full
* Trained on Imagenet

dataset [Deng et a]_ CVPR’OQ] Layer 5: Conv + Pool
Layer —; Conv

18.2% top-5 error W

Layer 3: Conv

Layer 2: Conv + Pool

* Our reimplementation: -
181% top-s error Layer 1: Conv + Pool

Input Image




Architecture of Krizhevsky et al.

-------------------------------------------------------------------------------------

* Remove top fully

connected layer

: Full
- Layer 7 Layer 6: Fu
LayErE:Coﬁv-?Pool
* Drop 16 million e
parameters E
Layer 3: Conv
* OIlly 1.1% drop in Layer 2: Conv + Pool
| E
performance‘ Layer 1: Conv + Pool

Input Image




Architecture of Krizhevsky et al.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

* Remove both fully connected
layers

— Layer 6 & 7

Layer 5: Conv + Pool

» Drop ""50 mﬂ]jon parameters Layer 4: Conv

Layer 3: Conv

* 5.7% drop in performance e vt )

Layer 1: Conv + Pool

Input Image



Architecture of Krizhevsky et al.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Softmax Output

* Now try removing upper feature
extractor layers:

— Layers 3 & 4

Layer 7: Full

Layer 6: Full

Layer 5: Conv + Pool

* Drop ~1 million parameters

* 3.0% drop in performance

Layer 2: Conv + Pool

Layer 1: Conv + Pool

Input Image




Architecture of Krizhevsky et al.

Softmax Output
* Now try removing upper feature
extractor layers & fully connected:
— Layers 3,4,6,7

Layer 5: Conv + Pool

* Now only 4 layers

e 33.5% drop n performance
Layer 2: Conv + Pool

9Depth Of network 1S key Layer 1:anv + Pool

Input Image



Tapping off Features at each Layer

-------------------------------------------------------------------------------------

Plug features from each layer into linear SVM or soft-max

Cal-101 Cal-256
(30/class) | (60/class)
SVM (1) 44.8+0.7 (246 1+ 0.4
SVM (2) 66.2 =0.5 [39.6 =0.3
SVM (3) 72.3+04 |46.0+0.3
SVM 4) 76.6 £0.4 |51.3+0.1
SVM (5) 86.2+-0.8(65.6+0.3
SVM (7) 86.56+04|71.71+0.2
Softmax (5) | 82.9 0.4 |65.7T£ 0.5
Softmax (7) |85.4+0.4|72.6 = 0.1




Architecture of Krizhevsky et al.
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* Remove both fully connected
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— Layer 6 & 7

Layer 5: Conv + Pool

» Drop HSO mﬂ]jon parameters Layer4: Conv

Layer 3: Conv

* 5.7% drop in performance R

Layer 1: Conv + Pool

Input Image



Architecture of Krizhevsky et al.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Softmax Output

* 8 layers total

Layer 7: Full

- Layer 6: Full
* Trained on Imagenet

dataset [Deng et al CVPR’OQ] Layer 5: Conv + Pool
Layer r; Conv

18.2% top-5 error |

Layer 3: Conv

Layer 2: Conv + Pool

* Our reimplementation: -
181% top-—s error Layer 1: Conv + Pool

Input Image




Tapping off Features at each Layer

-------------------------------------------------------------------------------------

Plug features from each layer into linear SVM or soft-max

Cal-101 Cal-256
(30/class) | (60/class)
SVM (1) 44.8 +0.7 (246 +0.4
SVM (2) 66.2 =0.5 [39.6 =0.3
SVM (3) 72.3+04 |146.0+0.3
SVM 4) 76.6 £0.4 |51.3+0.1
SVM (5) 86.2 +-0.8(65.6+0.3
SVM (7) 86.5+04(71.7+0.2
Softmax (5) | 82.9 +0.4 |[65.7 0.5
Softmax (7) |85.4+0.4|72.6 = 0.1




Translation (Vertical)




Scale Invariance




Rotation Invariance




Visualizing
ConvNets



Visualizing Convnets

.................................................................................

* Raw coefhicients of learned filters in higher
layers difhcult to interpret

* Several approaches look to optimize input
to maximize activity in a high-level feature
— Erhan et al. [Tech Report 2009]
— Le et al. [NIPS 2010]
— Depend on initialization

— Model invariance with Hessian about

(locally) optimal stimulus




Visualization using Deconvolutional Networks

.....................................................................................

[Zeiler et al. CVPR’10, ICCV11, arXiv'13]

* Provides way to map activations at

high layers back to the input

* Same operations as Convnet, but in Unpooling
reverse:

— Unpool feature maps

Non-linearity

— Convolve unpooled maps
* Filters copied from Convnet

Convolution (learned)

* Used here purely as a probe

— Originally proposed as unsupervised
learning method Input Image

+
?
*
| pucimage

— No inference, no learning



Deconvnet Projection from Higher Layers
[Zeiler and Fergus. arXiv'13]
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Layer 1: Feature maps
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Deconvnet Projection from Higher Layers
[Zeiler and Fergus. arXiv'13]
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Feature
Map

Layer 2: Feature maps

Layer 1: Feature maps
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Deconvnet Projection from Higher Layers
[Zeiler and Fergus. arXiv'13]

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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Deconvnet Projection from Higher Layers
[Zeiler and Fergus. arXiv'13]
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Visualizations of Higher Layers

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

* Use ImageNet 2012 validation set [Zeiler and Fergus. arXiv'13]
Push each image through network

Feature
Map
. . Filters
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Layer 1 Filters




Visualizations of Higher Layers
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* Use ImageNet 2012 validation set [Zeiler and Fergus. arXiv'13]
Push each image through network

Feature
Map
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Visualizations of Higher Layers

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

* Use ImageNet 2012 validation set [Zeiler and Fergus. arXiv'13]
Push each image through network

Feature
Map

. . Filters

Lower Law—r:.

./ Validation Images



Visualizations of Higher Layers
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* Use ImageNet 2012 validation set [Zeiler and Fergus. arXiv'13]

Push each image through network

[ ]
Feature W
Map

. . Filters

Lower Law—rf:

! Validation Images

Take max activation from
feature map associated

with each filter

Use Deconvnet to project
back to pixel space

Use pooling “switches”
pccu.lja: to that activation



Layer 1: Top-9 Patches
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Layer 2: Top-1




Layer 2: Top-9

« NOT SAMPLES FROM MODEL

* Just parts of input image that give strong activation of this feature map

B Non—parametric view on invariances learned by model
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Layer 2: Top-9

« NOT SAMPLES FROM MODEL

* Just parts of input image that give strong activation of this feature map

. Non—parametric view on invariances learned by model
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Layer 2: Top-9

« NOT SAMPLES FROM MODEL

* Just parts of input image that give strong activation of this feature map

B Non—parametric view on invariances learned by model
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Layer 2: Top-9

« NOT SAMPLES FROM MODEL

* Just parts of input image that give strong activation of this feature map

B Non—parametric view on invariances learned by model
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Layer 2: Top-9

« NOT SAMPLES FROM MODEL

* Just parts of input image that give strong activation of this feature map

. Non—parametric view on invariances learned by model
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Layer 3: Top-1
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Layer 4: Top-1
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Diagnosing Problems

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

* Visualization of Krizhevsky et al.’s architecture
showed some problems with layers 1 and 2

— Large stride of 4 used

e Alter architecture: smaller stride & filter size
— Visualizations look better

— Performance improves



Comparison with Krizhevsky et al.

 Layer 2 visualizations

Krizhevsky et al.

A 5 e




Comparison with Krizhevsky et al.




ImageNet Classification 2012

.....................................................................................

[Zeiler and Fergus. arXiv'13]

Val Val Test
Error % Top-1 | Top-5 | Top-5
(Gunji et al., 2012) - - 26.2
(Krizhevsky et al., 2012), 1 convnet 40.7 18.2 ——

Our replication of
(Krizhevsky et al., 2012), 1 convnet 40.5 18.1 =

* Trained using Imagnet 2011 and 2012 training sets.




ImageNet Classification 2012

-------------------------------------------------------------------------------------

[Zeiler and Fergus. arXiv'13]

Val Val Test
Error % Top-1 | Top-5 | Top-5
(Gunji et al., 2012) - : 26.2
(Krizhevsky et al., 2012), 1 convnet 40.7 18.2 ——
Our replication of
(Krizhevsky et al., 2012), 1 convnet 40.5 18.1 - —
1 convnet as per Fig. 3 38.4 16.5 ——

* Trained using Imagnet 2011 and 2012 training sets.




ImageNet Classification 2012

-------------------------------------------------------------------------------------

[Zeiler and Fergus. arXiv'13]

Val Val Test

Error % Top-1 | Top-5 | Top-5
(Gunji et al,, 2012) - 3 6.2
(Krizhevsky et al., 2012), 1 convnet 40.7 18.2 -

(Krizhevsky et al., 2012), 5 convnets 38.1 16.4 16.4
(Krizhevsky et al., 2012)™, 1 convnets | 39.0 16.6 ——
(Krizhevsky et al., 2012), 7 convnets | 36.7 15.4 15.3

Our replication of
(Krizhevsky et al., 2012), 1 convnet 40.5 18.1 - —

1 convnet as per Fig. 3 38.4 16.5 -

5 convnets as per Fig. 3 — (a) 36.7 15.3 15.3

1 convnet as per Fig. 3 but with
layers 3,4,5: 512,1024,512 maps — (b) 37.5 16.0 16.1

6 convnets, (a) & (b) combined 36.0 14.7 14.8

* Trained using Imagnet 2011 and 2012 training sets.




ImageNet Classification 2013 Results

. hrtp //www.image-net.org/challenges/LSVRC/2013/results.php
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* Pre-2012: 26.2% error =2 2012: 16.5% error = 2013: 11.2% error



How to Choose Architecture

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

* Task-dependent but many hyper-parameters:
— # layers, # feature maps, strides in conv/pool

— limited by amount of labeled data & GPUs

* Cross-validation
* Grid search (need lots of GPUs)

* Smarter strategies:
— Random [Bergstra & Bengio JMLR 2012]
— Bayesian optimization [Snoek et al. NIPS 2012]
— Using visualizations [Zeiler & Fergus, arXiv 1311.2901]



Training Big ConvNets

* Back-propagation of error
— [Rumelhart, Hinton & Williams 1986] + many others
— Chain rule

e Stochastic Gradient Descent
— 2% grder methods expensive

— L. Bottou “Stochastic Gradient Tricks” Neural Networks 2012

« Momentum
— Nesterov variant [ Sutskever et al. ICML 2012]

* Classification loss: cross-entropy

* GPU implementation



Pre-Processing

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

* Mean removal

* Whitening (ZCA)
— Form of PCA

— Removes correlations

[Krizhevsky et al. NIPS'12]

— But too expensive for entire image

* Contrast
normalization




Evolution of Features During Training
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Annealing of Learning Rate

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

* Start large & slowly reduce, to 100-1000x smaller by end
* Explore different scales of energy surface

‘ = (data)
—_— (test) -

W T T ——




Evolution of Features During Training
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Evolution of Features During Training




Evolution of Features During Training
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Evolution of Features During Training
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Improving Generalization

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

* Data augmentation (crops/flips etc. of images)
* Weight decay (L1 or L2 penalty on weights)

* Inject Noise into network
— DropOut [Hinton et al. 2012]
— DropConnect [ Wan et al. ICML 2012]
— Stochastic Pooling [Zeiler & Fergus ICLR’13]



Big Model + Regularize vs Small Model

ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt




Big Model + Regularize vs Small Model

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Small model




Big Model + Regularize vs Small Model

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Small model Big model




Big Model + Regularize vs Small Model

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Small model Big model Big model
+ Regularize




DropOut

-------------------------------------------------------------------------------------

* G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and R. R.
Salakhutdinov, I mproving neural networks by preventing co-adaptation of

feature detectors, arXiv:1207.0580 2012

* Fully connected layers only

* Randomly set activations in
layer to zero

* Gives ensemble of models
* Similar to bagging
[ Breiman'94], but differs in
that parameters are shared.




DropConnect

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

e Wan etal. ICML 2013

* Fully-connected layers only
* Random binary mask on weights




DropOut

-------------------------------------------------------------------------------------

* G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and R. R.
Salakhutdinov, / mproving neural networks by preventing co-adaptation of
j}aru're detectors, arXav:1207.0580 2012

* Fully connected layers only

* Randomly set activations in
layer to zero

* Gives ensemble of models

* Similar to bagging
[Breiman'94], but differs in
that parameters are shared.




DropConnect

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

e Wan etal. ICML 2013

* Fully-connected layers only
* Random binary mask on weights

utput mask

-
— I
-
-




Stochastic Pooling

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

[Zeiler and Fergus, ICLR 2013]
* For conv layers

* Compute activations a;: (= 0U)
a;

* Normalize tosumtol -> p; =

: : B SRR
* Sample location, /, from multinomial <~/ ;

e Use activation from the location: s = q;




DropConnect

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

* Wan et al. ICML 2013
* Fully-connected layers only

* Random binary mask on weights

-
L
-
L
-
- l
— .
-
-




DropOut

-------------------------------------------------------------------------------------

* G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and R. R.
Salakhutdinov, Improving neural networks by preventing co-adaptation of
ﬁ'aru're detectors, arXav:-1207.0580 2012

* Fully connected layers only

* Randomly set activations in
layer to zero

* Gives ensemble of models
* Similar to bagging
[ Breiman'94], but differs in
that parameters are shared.




Stochastic Pooling

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

[Zeiler and Fergus, ICLR 2013]
* For conv layers

* Compute activations a;: (= 0U)
a;

* Normalize tosumtol -> p; =

: : —a? ket Gk
* Sample location, /, from multinomial <~/ A

* Use activation from the location: s = a;




Stochastic Pooling: CIFAR-10

— Avg (train)

—— Avg (test)

- = =Max (train)

—e— Max (test)

- = Stochastic (train)
—=— Stochastic (test)




Other Good Things to Know

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

* Check gradients numerically by finite differences

* Plot feature maps: should be uncorrelated & high variance

samples

hidden unit
re sparse Slide credit:
M. Ranzato -E




Other Good Things to Know

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Check gradients numerically by finite differences

Plot feature maps: should be uncorrelated & high variance

samples

(B3 .71 71 a3 1
"TIRIETY b i
HIEI I I
= 5.12 3 & & E !
f"l- L] [ - = l!l IF-
TR " 1 | B
TINIRL ; 2 111 i
TN : | k|
L e rg" | S
e -
(31 41 | & E 1

hidden unit

Slide credit:
M. Ranzato ﬂ




It’s not working — what do | do?

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

* Training diverges:
* Learning rate may be too large
— decrease learning rate
* BackProp is buggy

— numerical gradient checking

* Parameters collapse / loss is minimized but accuracy is low

* (Check loss function:

* Is it appropriate for the task you want to solve?
* Does it have degenerate solutions?

Slide credit:
M. Ranzato 'ﬁ



It’s not working — what do | do?

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

+ Network is underperforming
* Compute flops and # parameters
— if too small, make net larger
* Visualize hidden units/parameters
— fix optimization

* Network is too slow
* Compute flops and # parameters

— GPU, distributed framework, make net smaller

Slide credit:
M. Ranzato 'E



It’s not working — what do | do?

* Training diverges:
* Learning rate may be too large
— decrease learning rate
* BackProp is buggy

— numerical gradient checking

* Parameters collapse / loss is minimized but accuracy is low

 (Check loss function:

* Is it appropriate for the task you want to solve?
* Does it have degenerate solutions?

Slide credit:
M. Ranzato .ﬁ



It’s not working — what do I do?

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

« Network is underperforming
* Compute flops and # parameters
— if too small, make net larger
* Visualize hidden units/parameters
— fix optimization

* Network is too slow

* Compute flops and # parameters
— GPU, distributed framework, make net smaller

Slide credit:
M. Ranzato ‘E



Sample Classification Results

[Krizhevsky et al. NIPS'12]
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lens cap
reflex camera ' ! hen

Polaroid camera [t‘,rpewnter keyboard ini | cock
pencil sharpener space bar| [T ground beetle cocker spaniel

switch computer keyboard common newt partridge
comhmation lock accordion I water snake | English setter

chambered nautilus tape player planetarium
lampshade | | cellular telephone | planetarium

tiger cat | throne | | siot dome

tabby goblet r reflex camera mosque
boxer | table lamp L' dial telephone radio telescope
|

Saint Bernard | hamper iPod steel arch bridge




Sample Classification Results

[ Krizhevsky et al. NIPS'12]

EBRASS A SRR EESR A E RS EEREN N ESE R EEEE RN ESEEEEE RS RS EEEREES

mite
mite
black widow
cockroach
tick

convertible

pickup
beach wagon

fire engine ||

" container ship

container ship
lifeboat
amphibian
fireboat

drilling platform

mushroom
agaric
mushroom
jelly fungus
gill fungus
dead-man’'s-fingers

motor scooter
~ motor scooter
go-kart
moped
bumper car
goifcart

dalmatian
grape
eliderberry

ffordshire bullterrier

currant

cheetah
snow [eopard
Egyptian cat

sguirrel monkey
| spider monkey
titi

indri

howler monkey




Object Detection



Detection with ConvNets

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

e So far, all about

classification

* What about
localizing objects
within the scene?

tv or monitor

tv or monitor (2)
tv or monitor (3)
person

remote control
remote control (2)




Occlusion Experiment

* Monitor output
of classification
network

* Perhaps network using scene context?



Occlusion Experiment

* Monitor output
of classification
network

* Perhaps network using scene context?



Input image




Input image




Input image

11 | anal-
Tri_lf ._.'_ir_r't__:.

p(True class)




Sliding Window with ConvNet

Conv

13

Layer 5

Full

-

Full

-

class
softmax

Layer6 Layer7  Output



Sliding Window with ConvNet

Conv Conv Conv Conv Conv Full Full
image size 224 110 - 1 - 13 — -
filter size 7 [+ 13 ' 3
1 Lau _ Y1 384 .{5&
‘m'idel | b C
: pool 4096/ | 4096| class
: strice 2 units| | units| | softmax
6 256

Input Image

224

224 Feature Extractor 6 Classifier

Input Window

Layer 3 Layer4 Layer 5 Layer6 Layer7  Output



Sliding Window with ConvNet

Conv Conv Conv Conv Conv Full Full

image size 224 110 p 1 - 13

— -

e 3 E

2 C
P 4096| | 4096 class

7 units| | units| | softmax
6 256 || |

Layer 3 Layer 4 Layer 5 Layer6 Layer7  Output

240
7
16 224 Feature Extractor 6 | |
—— = \255
Input Window

No need to compute two separate windows
Just one big input window, computed in a single pass




ConvNets for Detection

Feature Class
Maps Maps
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ConvNets for Detection
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ConvNets for Detection
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ConvNets for Detection
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ConvNets for Detection
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Bounding Box prediction example
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Bounding Box prediction example




Detection Results
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[Sermanet et al. CVPR’14, under review]

Top prediction
watercraft [confidence 72.2 watercraft
matercraft (confidence 2.1) watercraft (2)

Top predictions Groundtruth
trambones (confidence 26.8) pErson
oboe (confidence 17.5) hat with a wnde brim
oboe (confidence 11.5) hat with 3 wide brim (2]
hat with a wide brim (3)
sboe
aboe (2]
L f gphane
trombone
person {2}
person (3}
person (4}

Top predictions Groundtruth
tennis ball (confidence 3.5) strawbherry
banana (confidence 2.4) strawberry (2)
banana (confidence 2.1) strawberry (3}
hotdog (confidence 2.0) strawberry (4}
banana (confidence 1.9) strawberry (5)
strawberry (6)
strawberry (7)
strawberry (8)
strawberry (9)
strawberry (10]
Appile
apple (2)
a {3)

Top predictions

microwave (Confidence 5.6)
refrigerator (confidence 2.5)




Detection Results
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[Sermanet et al. CVPR’14, under review]

LN
Top predictions: Groundtruth:
tv or monitor (confidence 11.5) tv or monitor
person (confidence 4.5) tv or monitor (2)

miniskirt (confidence 3.1) tv or monitor (3)
person

remote control
remote control (2)




Pedestrian Detection

* Model helped by

unsupervised pre—training




Feature
Generalization



Using Features on Other Datasets

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

* Train model on ImageNet 2012 training set

* Re-train classifier on new dataset
— Just the softmax layer

* Classify test set of new dataset



Caltech 101

Donahue et al., DeCAF: A Dafp Conwolutional Activation Feature for Generic Visual
Recognition, arXiv 1310.1531, 2013

alegory

™
4O

LogReg DeCAF6 w/ Dropout
SVM DeCAF6 w/ Dropout
Yang et al. (2009)

-JI
-
Q
2
o
3
O

<C
D

10
Num Train per Category




Caltech 256

Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013

20 30
Training Images pe!




Caltech 256
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Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013

6 training examples
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Caltech 256

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013

Acc % Acc % Acc % Acc %
# Train 15/class 30/class 45/class 60/class
Sohn et al. [16] [35.1 42.1 45.7 47.9
Boetal [7] 405+04 |480+0.2 |51.9+0.2 [55.2+0.3
Non-pretr. 9014 |2254+0.7 |31.2+05 |388+14
ImageNet-pretr. |65.7 = 0.2|70.6 = 0.2|72.71+04|74.2+ 03

[3] L. Bo, X. Ren, and D. Fox. Multipath sparse coding using hierarchical matching pursuit.

In CVPR, 2013.

[16] K. Sohn, D. Jung, H. Lee, and A. Hero I11. Efficient learning of sparse, distributed,
convolutional feature representations for object recognition. In ICCV, 2011.




PASCAL VOC Detection

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Girshick et al., Rich feature hierarchies for accurate object detection and semantic
segmentation, arXiv 1311.2524, 2013

R-CNN: Regions with CNN features

irped P aeroplane? no

O o ’

T 4
Tl ot Yo "b' PETSOn ' 5.

_Z_‘_—"-.-; NN
NN
Q_

tvmonitor? no.
1. Input 2. Extract region 3. Compute 4. Classity
image proposals (~2k) CNN features regions

* 43.1% mean AP vs previous 35.1%



Deep Nets vs Monkey vs Human
C.F. Cadieu, H. Hong, D. Yamins, N. Pinto, E.A. Solomon, N.].
Majaj, and ].J. DiCarlo. Deep Neural Networks Rival the Object
Recognition Performance of the Primate Visual System. (PLOS One
Biology, in submission, 2013).




Deep Nets vs Monkey vs Humans
[Cadieu et al.]

* Rapid presentation experiments (100ms)

* Feed-forward processing only in monkey/humans
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Deep Nets vs Monkey vs Humans
[Cadieu et al.]

* Rapid presentation experiments (100ms)

* Feed-forward processing only in monkey/humans




Other Vision
Applications




Scene Parsing

* Farabet et al. “Learning hierarchical features for scene labeling” PAMI 2013




Action Recognition from Video

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Taylor et al. “Convolutional learning of spatio-temporal features” ECCV 2010

Fommty o




Segmentation

* Ciresan et al. “DNN segment neuronal membranes...” NIPS 2012
* Turaga et al. “Maximin learning of image segmentation” NIPS 2009

I = — - 3 = 9 — -
o ' fac JRCRSRRRNEE (M A B B » ’ - 9,
L - = .




Biological Detection

LE S B S R RSN SR EE RN SRS RN RN RN NN

* D. Ciresan, A. Giusti, L.M. Gambardella, ]. Schmidhuber - Mitosis
Detection in Breast Cancer Histology Images using Deep Neural Networks
(MICCALI 2013)
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* Burger et al. “Can plain NNs compete with BM3D?” CVPR 2012

Noised » | Denoised
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Removing Artifacts

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

[Eigen et al. “Restoring an Image Taken Through a Window Covered
with Dirt or Ram ICCV 2013]




Removmg Artifacts
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[Eigen et al. Restormg an Image Taken Through a Wmdow Covered
with Dirt or Rain "ICCV 2013]
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Removing Artifacts

LE R B B B B B B 2 2 B N2 22 R RN R R R LR LSRR EEEESEREEESESEEERENEESEERESE SRR ESESESRERESEERESESESEESREEEESREESSESRSESESEE]

[Eigen et al. “Restoring an Image Taken Through a Window Covered
with Dirt or Rain ”ICCV 2013]
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Removing Artifacts

.....................................................................................

| Eigen et al. “Restoring an Image Taken Through a Window Covered
with Dirt or Rain ”ICCV 2013]
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Future
Directions



* Relatively under-explored
* Learn about 3D structure from motion

* Need big labeled video dataset
= LR - QR‘* Pl %
9% & Atf‘"t ‘s

"‘f'

A




Deep Learning + Structured Prediction

....................................................................................

* ConvNet feature extractor

* Combine with top-down reasoning

Stochastic Grammars

[Fischler and R. Elschlager 1973 ] [R Girshick, P. Felzenszwalb, D. McAllester, ObjCCI'
Detection with Grammar Models, NIPS 2011]



* Yann LeCun was right!

* Deep ConvNets work well for recognition

— Quite a bit better than existing vision approaches

* Can be used for many other vision tasks

* But unsupervised learning still an open problem



URL: http://horatio.cs.nyu.edu

Image Classifier Demo i
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Demo Notes
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ICLR 2014 Conference

¢ Deadline: 20®™ December 2013
* Banff, Canada, April 14-16" 2014

* Welcome anything to do with representation learning!
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* Yann LeCun was right!

* Deep ConvNets work well for recognition

— Quite a bit better than existing vision approaches

* Can be used for many other vision tasks

* But unsupervised learning still an open problem



Removing Artifacts

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

[Eigen et al. “Restoring an Image Taken Through a Window Covered
with Dirt or Rain "ICCV 2013]




Other Vision
Applications
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* Rapid presentation experiments (100ms)

* Feed-forward processing only in monkey/humans




Deep Nets vs Monkey vs Human

------------------------------------------------------------------------------------

C.F. Cadieu, H. Hong, D. Yamins, N. Pinto, E.A. Solomon, N.J.
Majaj, and ].J. DiCarlo. Deep Neural Networks Rival the Object
Recognition Performance of the Primate Visual System. (PLOS One
Biology, in submission, 2013).




Deep
Learning



Convnet Successes

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

* Handwritten text/digits
— MNIST  (0.17% error [Ciresan et al. 2011])
— Arabic & Chinese [Ciresan et al. 2012]

* Simpler recognition benchmarks
— CIFAR-10 (9.3% error [ Wan et al. 2013])

— Trafhic sign recognition
* 0.56% error vs 1.16% for humans [Ciresan et al. 2011]




Deep Learning
for
Computer Vision

NIPS 2013 Tutorial

Rob Fergus

Dept. of Computer Science
New York University




Unpooling Operation

-------------------------------------------------------------------------------------

Max Locations

“Switches”




